Early Cambrian black shale-hosted Mo-Ni and V mineralization on the rifted margin of the Yangtze Platform, China: Reconnaissance chromium isotope data

BERND LEHMANN, ROBERT FREI, LINGANG XU AND JINGWEN MAO

The transgressive basal unit of the Early Cambrian blackshale sequence along the rifted margin of the southeastern Yangtze Platform hosts a wide spectrum of marine sedimentary rocks distributed over more than 1000 km length. A-few-cm thick sulfide-rich black shale units have spectacular metal tenors (Mo and Ni in the percent range, PGE + Au around 1 ppm) and consist of sub-mm-scale laminated sulfide and carbonaceous material and cm-sized pebble-like rip-up clasts of Mo-S-C compounds, pyrite, and Ni-rich polymetallic sulfides in carbonaceous and apatite-rich matrix.

The $\delta^{53/52}$ Cr_{auth} values of Mo-Ni-sulfide-rich black shale samples from the Huangjiawan mine (Guizhou province), as well as from the Sancha district (Hunan province), 400 km NE, have a mean of 0.96 ±0.22 ‰ (n=8), while V-rich black shale from both districts has a mean of 1.34 ±0.46 ‰ (n=5). These data indicate significantly positively fractionated values compared to igneous silicate Earth. The Cr isotope values of the studied shales compare with recent findings of positively fractionated $\delta^{53/52}$ Cr values in Late Neoproterozoic – Phanerozoic marine carbonates and shale/mudstones and attest for the operation of an intensified oxidative surface Cr cycle from at least around ~0.75 Gyr ago.

The Cr isotope data confirm earlier conclusions from Mo and Os isotopes which indicate a seawater metal source with ultimate metal supply by oxidative weathering of continental crust. The Mo-Ni-sulfide rich sediments can be regarded as the euxinic variant of the marine hydrogenous ore deposit spectrum, where ferromanganese nodules/crusts represent the oxic end-member of extreme fractionation.