Linking mineralogical and geochronological record of monazite during ultra-high temperature granulite-facies metamorphism

A. Laurent ${ }^{1 *}$, A. M. Seydoux-Guillaume ${ }^{1}$, S. DUCHENE ${ }^{1}$, B. BINGEN ${ }^{2}$, V. Bosse ${ }^{3}$ AND S. GOUY ${ }^{1}$

'GET, UMR 5563 CNRS-UPS-IRD, Université de Toulouse, 14 av. E. Belin, 31400 Toulouse, France (*correspondence: antonin.laurent@get.obs-mip.fr)
${ }^{2}$ Geological Survey of Norway, 7491 Trondheim, Norway ${ }^{3}$ LMV, Université Blaise Pascal, 5 rue Kessler, 63000

Clermont-Ferrand, France
Monazite is a common accessory mineral in metamorphic rocks that often shows complex chemical zoning at the $\mu \mathrm{m}$ - to nm -scale. The large number of cations that may be accommodated in monazite lattice makes it particularly sensitive to changes in the rock-forming minerals and fluid composition. Chemical zoning resulting from dissolution / precipitation or new overgrowth may coincide, or not, with age zoning derived from $\mathrm{U}-\mathrm{Th}-\mathrm{Pb}$ isotopes. In this study, we focus on the mineralogical, $\mathrm{U}-\mathrm{Pb}$ and $\mathrm{Th}-\mathrm{Pb}$ isotopic responses of monazite to polyphase metamorphism reaching ultra-high temperature ($>900{ }^{\circ} \mathrm{C}$) in the Proterozoic province of Rogaland, S. Norway. The P-T path of several granulite samples is derived from phase diagrams. Monazite grains were analyzed for trace elements with a FEG-microprobe that allows to compute $\mathrm{U}-\mathrm{Th}-\mathrm{Pb}$ chemical age maps and substitution maps with sub- $\mu \mathrm{m}$ spatial resolution. These maps, coupled with LA-ICP-MS U-Pb and $\mathrm{Th}-\mathrm{Pb}$ isotopic measurements reveal (1) perturbed domains that underwent differential $\mathrm{U}, \mathrm{Th}, \mathrm{Pb}$ mobility and (2) domains of consistent chemical and isotopic composition. From the latter domains, it is possible to link prograde sulfide breakdown to growth of monazite cores enriched in S at ca. 1020 Ma and high-Y rims to garnet breakdown during decompression at ca. 930 Ma . Finally, in order to check the presence of nano-phases or filled pores able to disturb the isotopic signal, a detailed TEM study of the perturbed domains was undertaken.

