Spatial patterns in CO₂ evasion from the global river network

R. LAUERWALD^{12*}, G. G. LARUELLE¹, J. HARTMANN³, P. CIAIS⁴ AND P. REGNIER¹

¹Department of Earth and Environmental Sciences, Université Libre de Bruxelles, 1050 Brussels, Belgium

(*correspondence: ronny.lauerwald@ulb.ac.be)

²Institut Pierre-Simon Laplace, CNRS – FR636, 78280 Guyancourt cedex, France

³University of Hamburg, Institute for Geology, 20146 Hamburg, Germany

⁴LSCE IPSL, UMR8212, F-91191 Gif Sur Yvette, France

 CO_2 evasion from rivers (*FCO*₂) is an important component of the global carbon budget. Here, we present the first global maps of CO_2 partial pressures (*pCO*₂) in rivers and the resulting *FCO*₂ at 0.5° resolution constructed with a statistical model. We first derived a *pCO*₂ prediction function trained on data from 1182 sampling locations covering the full spectrum from high to low latitudes. The predicted *pCO*₂ map was then combined with spatially explicit estimates of stream surface area *A*_{river} and gas exchange velocity *k* calculated from published empirical equations and data sets to derive the *FCO*₂ map.

At the global scale, we estimate an average river pCO_2 of 2400 (2019-2826) μ atm and a FCO_2 of 650 (483-846) Tg C yr⁻¹ (5th and 95th percentile of confidence interval). Our maps reveal strong latitudinal gradients in pCO_2 , A_{river} and FCO_2 . The zone between 10°N and 10°S contributes about half of the global CO₂ evasion. Collection of pCO_2 data in this zone, in particular for African and South East Asian rivers is a high priority to reduce uncertainty on FCO_2 . Additionally, we also used our model to simulate projections of the global pCO_2 and FCO_2 distribution in the year 2100 following the IPCC scenario RCP8.5. We predict an increase in CO₂ evasion of about 60% compared to present-day conditions, due to the combined effects of ice and snow cover, changes in temperature, terrestrial NPP and population density.