Tetrahedrally coordinated boron in synthetic high-pressure olenite: Towards Raman spectroscopy as a chemical probe for tourmaline

MARTIN KUTZSCHBACH^{12,*}, BERND WUNDER¹,
DIETER RHEDE¹, MONIKA KOCH-MÜLLER¹,
ANDREAS ERTL³⁴, GERALD GIESTER⁴,
WILHELM HEINRICH¹ AND GERHARD FRANZ²

¹GeoForschungsZentrum Potsdam, 14473 Potsdam ²Technische Universität Berlin, 13355 Berlin ³Naturhistorisches Museum Wien, 1010 Wien ⁴Universität Wien, 1090 Wien *correspondance: mkutz@gfz-potsdam.de

Olenitic tourmaline with high amounts of tetrahedral B (up to 2.53 [4]B pfu) has been synthesized in a piston-cylinder press at 4.0 GPa/700 °C and a run duration of 9 days. Crystals are large enough (up to 30 x 150 μ m²) to allow for reliable and spatially resolved quantification of B by electron microprobe analysis (EMPA), single-crystal X-ray diffraction, and polarized single-crystal Raman spectroscopy. Tourmaline with radial acicular habit is zoned in ^[4]B-concentration (core: 2.53(25) ^[4]B pfu; rim: 1.43(15) ^[4]B pfu) whereas columnar crystals are chemically homogeneous (1.18(15) [4]B pfu). A similar amount of 1.4(1) [4] B pfu was found in the columnar tourmaline by single-crystal structure refinement (SREF) (R =1.94%). The EMPA identify ${}^{[T]}Si_{-1}{}^{[V,W]}O_{-1}{}^{[T]}B_{1}{}^{[V,W]}(OH)_{1}$ as the main and ${}^{[X]}\Box_{-1}{}^{[T]}Si_{-1}{}^{[X]}Na_1{}^{[T]}B_1$ as minor exchange vectors for [4]B incorporation, which is supported by the SREF. Due to the restricted and well-defined variations in chemistry, Raman bands in the OH-stretching region (3000 - 3800 cm⁻¹) are unambiguously assigned to a specific cation arrangement. We found the sum of the relative integrated intensity (I_{rel}) of two low frequency bands at $3284 - 3301 \text{ cm}^{-1}$ (v1) and 3367 - 3384cm⁻¹ (v2) to positively correlate with the ^[4]B concentrations: [4]B [pfu] = $0.03(1) * [I_{rel} (v1) + I_{rel} (v2)]$. Hence, those bands correspond to configurations with mixed Si/B occupancy at the T site. Our semi-quantitative correlation also holds for wellcharacterized natural [4]B-bearing tourmaline from the Koralpe, Austria.

This study contributes to promote Raman spectroscopy as a fast and non-destructive tool for the chemical classification of (precious) natural tourmaline.