The distribution of ²³¹Pa and ²³⁰Th between dissolved and particulate phases in the western North Atlantic

SVEN KRETSCHMER¹²,

MICHIEL M. RUTGERS VAN DER LOEFF¹, PERE MASQUE³ AND WALTER GEIBERT¹

¹Alfred-Wegener-Institute for Polar and Marine Research Bremerhaven, Germany

²North Rhine Westphalian State Agency for Nature, Environment and Consumer Protection, Düsseldorf, Germany, sven.kretschmer@lanuv.nrw.de

³Institut de Ciència i Tecnologia Ambientals (ICTA) and Departament de Física. Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain

²³⁰Th and the ²³¹Pa/²³⁰Th ratio have been widely used in marine sciences to study aspects of particle flux and ocean circulation. In particular, the ²³¹Pa/²³⁰Th ratio has been shown to be a useful proxy of paleoproductivity, paleocirculation, or biogenic opal flux, depending on the oceanographic setting. Yet, it is still not fully understood what are the mechanisms that control the scavenging of both isotopes, especially the differences in their behaviour.

Here we study the distribution of ²³¹Pa and ²³⁰Th in the Northern part of the GEOTRACES GA02 (Western Atlantic) section, on the basis of a comprehensive set of parameters, analyzed on five selected stations from 64°N to 18°N. Our data trace North Atlantic Deep Water (NADW) and Antarctic Bottom Water (AABW), allowing to test the hypothesis that the ²³¹Pa/²³⁰Th ratio tracks deep water ventilation in the North Atlantic. The measurement of ²³¹Pa and ²³⁰Th on particulate phases, together with their composition, provides additional constraints on depositional processes and on the role of opal on Pa scavenging in these locations.

Main features include the observation of a pronounced mid-water depth maximum in dissolved ²³¹Pa, and to some extent ²³⁰Th, increasing towards the South. Near the bottom, we find increased particle concentrations in benthic nepheloid layers (BNL), accompanied by high particulate fractions for both isotopes (36-82% for ²³⁰Th and 7-31% for ²³¹Pa). The relative fractions of lithogenic material (%lith) show a steadily increasing trend with depth, mostly reflecting the continuous loss of biogenic phases with depth.

The $^{2\bar{3}1}$ Pa/ $^{2\bar{3}0}$ Th fractionation factor (F) is found to be controlled by particle composition. Different trends of F with %lith are found between subtropical stations (high sensitivity of F for %lith) and subarctic stations (low sensitivity of F for %lith).