The study of air-ice CO₂ exchange emphasize the importance of gas bubble transport during sea ice growth

MARIE KOTOVITCH¹, SÉBASTIEN MOREAU² AND BRUNO DELILLE³

¹Unité d'Océanographie Chimique, Université de Liège, Belgium (Marie.Kotovitch@ulg.ac.be)

²Earth and Life Institute, Université Catholique de Louvain, Belgium (s.moreau@uclouvain.be)

³Unité d'Océanographie Chimique, Université de Liège, Belgium (Bruno.Delille@ulg.ac.be)

We report air-ice CO_2 fluxes measured continuously using automated chambers over artificial sea ice from freezing to decay. We observed an uptake of CO_2 as seawater was cooling down prior to sea ice formation. As soon as the first ice crystals started to form, we observed a shift from a sink to a source. Sea ice released CO_2 until we initiated the ice decay by warming the atmosphere. Sea ice then returned to be a CO_2 sink. Direct measurements of the fluxes were consistent with the depletion of dissolved inorganic carbon in sea ice. Measurements of bulk partial pressure of CO_2 in sea ice and of atmospheric CO_2 allowed us to assess a gas exchange coefficient for CO_2 at the air-sea ice interface during the grow stage. We compared these observations with a 1D biogeochemical model. Discrepancies between the model and the observations lead us to emphasize the role of gas bubbles in CO_2 transport through sea ice.