An experimental investigation of CO₂ leakage pathways in soils

JIN-SEOK KIM^{1*}, HO YOUNG JO¹ AND SEONG-TAEK YUN¹

¹Korea university, Earth and Environmental science, Seoul, Republic of Korea, darkach@korea.ac.kr^{*}

 $\rm CO_2$ capture and storage (CCS) is one of options for reducing $\rm CO_2$ emission to the atmosphere. $\rm CO_2$ geological storage is the most prospective natural storage methodology because huge amount of $\rm CO_2$ can be stored in appropriate geological formations. Stored $\rm CO_2$ can be leaked through various pathways and thus leakage monitoring is necessary to assess the $\rm CO_2$ leakage. The objective of this study is to evaluate visually the $\rm CO_2$ leakage pathways in soils at various conditions.

An acrylic reactor (25 x 25 x 5 cm) was used to mimic subsurface environment in a small scale. The reactor was filled with glass bead or soils and DI water or salt solutions. CO₂ gas was injected using a plastic pipe at 5 cm above the bottom of the reactor and the CO₂ concentration was measured at top of the reactor using a . An universal pH indicator was used to observe pH changes visually in pore water. The changes in color of the pore water was monitored using cam shots. CO₂ leakage flux was determined using CO₂ concentration measured at the top of the reactor.

Pathways of CO_2 bubbles and dissolved CO_2 when passed through the glass bead or soils were clearly observed. The test conditions such as porosity, water content, and heterogeneity of soils affects the characteristics of CO_2 leakage pathways. Results of this study also imply that the universal pH indicator can be useful for evaluating CO_2 leakage pathways in small scale laboratory experiments.