New chemical separation technique of Nd for ¹⁴⁶Sm-¹⁴²Nd chronology

SAYA KAGAMI^{1*} AND TETSUYA YOKOYAMA¹

¹Tokyo Institute of Technology, Tokyo 152-8550, Japan (^{*}kagami.s.ab@m.titech.ac.jp)

The combination of ¹⁴⁶Sm-¹⁴²Nd (T1/2 = 6.8×107 yr [1]) and ¹⁴⁷Sm-¹⁴³Nd systems (T^{1/2} = 1.06×10^{11} yr) has been widely used for the chronological study of meteorites and Hadean samples [2] [3]. To obtain precise and accurate Sm-Nd ages, high-yield and highly-pure Nd separation is indispensable prior to Nd isotope analysis. In this study, we developed a new chemical separation technique which enables to precisely determine the ¹⁴²Nd/¹⁴⁴Nd and ¹⁴³Nd/¹⁴⁴Nd ratios with TIMS, as well as the Sm/Nd ratios with ICP-MS for rock samples.

The performance of our method was evaluated using a basaltic standard, JB-3. The rock sample was dissolved by the mixture of concentrated acids (HClO⁴, HF, and HNO³). One-tenth of the solution was removed and mixed with ¹⁴⁹Sm- and ¹⁴⁵Nd-enriched spikes to determine Sm and Nd concentrations by ID-ICP-MS To avoid the isobaric interferences of molecular ions (e.g., ¹³⁰Ba16O, ¹³³Cs¹⁶O), the spiked sample solution was passed through the TRU resin (Eichrom). The reproducibility of Sm/Nd ratio was 0.37 % (n =5).

The remainder of the sample solution (90%) was conditioned by 1M HCl and passed through a cation exchange resin (1:1 mixture of AG50WX8 and AG50WX12) to separate REEs from major elements. Next, Ce was removed from the rest of REEs by modifying the methods of [4], in which Ce^{3+} in the sample solution (10M HNO3) was oxidized into Ce^{4+} using KBrO³ and passed through the LN resin (Eichrom). Finally, Nd was separated from Sm using the LN resin in HCl media. We achieved Ce/Nd = ~3×10⁻⁵ and Sm/Nd = ~4×10⁻⁵ with >91% Nd recovery.

The new chemical separation technique was applied for determining 146 Sm- 142 Nd and 147 Sm- 143 Nd ages of a basaltic eucrite, NWA 7188. The 146 Sm- 142 Nd and 147 Sm- 143 Nd mineral isochrons of NWA 7188 yielded ages of $4551\pm^{11}_{13}$ Ma and 4141 ± 310 Ma, respectively. The 146 Sm- 142 Nd age is consistent with the metamorphic age of another basaltic eucrite, Agoult [5]. In contrast, the younger 147 Sm- 143 Nd age was due to a secondary metamorphism on the parent body after the extinction of 146 Sm, which disturbed only the 147 Sm- 143 Nd systematics.

[1] Kinoshita et al. (2012) *Science* **335**, 1614-1617. [2] Boyet et al. (2010) *EPSL* **291**, 172-1812. [3] O'Neil et al. (2008) *Science* **321**, 1828-1831. [4] Tazoe et al. (2007) *JAAS* **22**, 616-622. [5] Iizuka et al. (2014) *EPSL* **409**, 182-192.