Multiple sulfur isotope analyses: Improvement and application to urban aerosols DAVID AU YANG^{12*}, GUILLAUME LANDAIS¹, NELLY ASSAYAG¹, THI HAO BUI³, BOSWELL WING³, DAVID WIDORY² AND PIERRE CARTIGNY¹ ¹Laboratoire de Géochimie des Isotopes Stables, IPG-Paris, France [*correspondence: auyang@ipgp.fr], [landais@ipgp.fr],[assayag@ipgp.fr], [cartigny@ipgp.fr] ²Dépt des Sciences de la Terre et de l'Atmosphère, UQAM -GEOTOP, Canada [widory.david@uqam.ca] ³Dept. of Earth and Planetary Sciences, McGill University, Canada [boswell.wing@mcgill.ca], [thihaobui@gmail.com] We report improvements for the simultaneous determination of multiple sulfur isotope compositions for both δ^{33} S, δ^{34} S and δ^{36} S on the SF₆ molecule (m/z: 127, 128, 129, 131) for quantities down to 0.4 micromoles, and δ^{33} S, δ^{34} S for quantities down to 20 nanomoles. Multiple analyses of two international Ag₂S standards, IAEA-S1 and IAEA-S3, yield a narrow range of $\delta^{34}S$ values vs CDT, with a standard deviation of \pm 0.2%. This ultimately allows the determination of the Δ^{33} S with an accuracy of \pm 0.03‰ (1 σ), Δ^{36} S from IAEA-S3 measurements still show larger variations with a standard deviation of $\pm 1\%$ (1 σ). This technique was applied to aerosols which are the main sources of urban pollution in order to better understand their formation conditions. Sulfur multi-isotope analysis of atmospheric emissions from the major S sources in the urban environment (road traffic, waste incinerators, heating, thermal plants and cement factories) shows that they can unambiguously be discriminated when their δ^{34} S, Δ^{33} S, and Δ^{36} S compositions are coupled. We are currently analyzing PM₁₀ (aerodynamical diameter <10 μ m) samples collected by the *Ville de Montreal* within the Montreal island since 1969 at 6 stations typical of distinct environments including road traffic, harbor, downtown, and natural background to elucidate the isotope shift associated with secondary aerosol formation process.