Strontium isotope compositions of apatite inclusions in Archaean zircon

AKIZUMI ISHIDA¹, NAOTO TAKAHATA¹, YUJI SANO¹, JEAN DAVID² AND DANIELE L. PINTI²

¹Atmosphere and Ocean Research Institute, the University of Tokyo

²Universite du Quebec a Montreal Centre GEOTOP

The isotope composition of strontium has been investigated in Archaean minerals to trace the evolution of the inner Earth [1, 2]. We have developed an analytical method to measure strontium isotopes in biogenic calcite or apatite using a NanoSIMS [3, 4]. We applied this method on micro-size apatite inclusions found in Archaean zircons from ca. 3.6 Ga tonalite of Nuvvuagittuq Supracrustal Belt Northern Quebec [5]. Zircon is known to be a metamorphic-resistant igneous mineral which can be dated precisely by uranium-lead method. Thus, apatite inclusions encapsulated in zircons should enable us to get some pristine information of the Earth's primitive interior.

In this study, we measured $^{87}\mathrm{Sr}/^{86}\mathrm{Sr}$ ratio using the NanoSIMS50 at the University of Tokyo, targeting apatite inclusions, which diameters are approximately 10 μm . A primary $^{16}\mathrm{O}$ ion beam of about 0.5nA was focused to less than 10um in diameter onto the apatite surface. The multi-collector system was adjusted to detect $^{26}\mathrm{Mg^+}$, $^{43}\mathrm{Ca^+}$, $^{40}\mathrm{Ca_2^+}$, $^{86}\mathrm{Sr^+}$, $^{87}\mathrm{Sr^+}$, and $^{138}\mathrm{Ba^+}$ simultaneously. The magnetic field was scanned to detect $^{86}\mathrm{Sr^+}$, $^{87}\mathrm{Sr^+}$, and $^{85}\mathrm{Rb^+}$, $^{86}\mathrm{Sr^+}$, $^{87}\mathrm{Sr^+}$, by single collectors, respectively [4].

Eight apatite inclusions from Nuvvuagittuq were selected and analyzed. Isobaric effect of ⁸⁷Rb on ⁸⁷Sr, and calcium dimers on each strontium isotopes, were subtracted according to the amount of measured ⁸⁵Rb⁺ and ⁴³Ca⁺, ⁴⁰Ca₂²⁺. Corrected ⁸⁷Sr/⁸⁶Sr values range from 0.70877 to 0.72034 +- 0.0031, with the Sr amount varying between 26 and 398 ppm. Obtained values are heavier compared with the Archaean mantle at 3.6 Ga (~0.703 calculated from primitive ⁸⁷Sr/⁸⁶Sr and additional ⁸⁷Sr from radiogenic decay of ⁸⁷Rb), suggesting possibility: (1) an additional source of strontium from the subducting slab; or (2) metamorphic-induced isotopic fractionation.

[1]Veizer & Compston, (1976) *GCA* **40** 905, , [2]Richardson et al., (1984) *Nature* **310** 198, [3]Sano et al., (2008) *App. Geochem.* **23** 2406, [4]Sano et al., (2014) *JAES* **92** 10, [5]David et al., (2009) *GSA Bulletin* **121** 150.