First occurrence of archaeal tetraether lipids with 5 to 7 cyclopentane moieties in a mesophilic setting

GORDON N. INGLIS1, B. DAVID A. NAAFS1, SARAH J. FEAKINS2, OUTI LAHTENOJA3, CAMILO PONTON2, MARGARET E. COLLINSON4, MEGAN ROHRSSEN1 AND RICHARD D. PANCOST1

1Organic Geochemistry Unit, School of Chemistry and Cabot Institute, University of Bristol, UK (correspondence: gordon.inglis@bristol.ac.uk)
2Department of Earth Sciences, University of Southern California, USA
3Department of Biology, University of Turku, Finland
4Department of Earth Sciences, Royal Holloway University of London, Egham, UK

Isoprenoidal glycerol dialkyl glycerol tetraethers (isoGDGTs) are cell membrane-spanning lipids belonging to a diverse group of Archaea. IsoGDGTs bearing up to 4 cyclopentane moieties are common in non-extreme environments, whereas isoGDGTs bearing 5 to 8 cyclopentane moieties have only been reported in hot springs and cultures of Euryarchaeota and Crenarchaeota grown at temperatures above 45°C (pH <1.5) and 65°C (pH 2-5.5), respectively. This suggests that the ability to synthesise more than 4 cyclopentane moieties is a unique adaptation of extremophiles. To explore this further, we report the distribution of isoGDGTs in a range of peat-forming environments from across the globe.

Our results demonstrate that high- and mid-latitude peats are dominated by GDGT-0 (typically >80%). Smaller quantities of GDGTs 1 to 4 were also detected. In tropical peats, GDGTs 1 to 4 are more abundant (up to 60% of total isoGDGTs). Intriguingly, a number of ombrotrophic tropical peats contain isoGDGTs bearing up to 7 cyclopentane moieties.

This is the first reported occurrence of isoGDGTs bearing more than 4 cyclopentane moieties within a mesophilic setting. Their occurrence is likely driven by a combination of high mean annual temperatures (>25 °C) and low pH (3.5-4.0). The presence of isoGDGTs 0-5 within an early Eocene, ombrotrophic bog (Schoningen, NW Germany) also suggests that this signal is preserved in deep-time settings. Our results indicate that isoGDGTs with more than 4 cyclopentane rings are not unique to thermophilic settings and that these compounds are likely more widespread than previously thought.