Environmental and physiological influences on the TEX₈₆ proxy

SARAH J. HURLEY^{1*}, FELIX J. ELLING², MARTIN KÖNNEKE², JULIUS S. LIPP², OLIVER JAHN³, STEPHANIE DUTKIEWICZ³, MICHAEL J. FOLLOWS³, KAI-UWE HINRICHS² AND ANN PEARSON¹

¹Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts 02138, USA (*correspondence: shurley@fas.harvard.edu)

²Organic Geochemistry Group, MARUM - Center for Marine Environmental Sciences & Department of Geosciences, University of Bremen, Bremen, 28359, Germany

³Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

The TEX₈₆ sea surface temperature (SST) proxy is a widely employed tool, yielding climate records from a diverse range of geographic locations over the past ~100 million years of Earth history [1] [2]. TEX₈₆ is an empirically calibrated proxy based on the membrane lipids of planktonic archaea, glycerol dibiphytanyl glycerol tetrathers (GDGTs). While the TEX₈₆ temperatures determined from marine sediments correlate with overlying SSTs, GDGTs produced throughout the upper water column do not reflect *in situ* temperatures at the depth of growth. This suggests that additional physiological factors, such as the need for cellular energy conservation, also affect the TEX₈₆ ratio. The ecology and growth conditions of marine archaea potentially play important roles in establishing the TEX₈₆-temperature correlation.

We investigated the mechanistic underpinning of the TEX₈₆ proxy using a combination of experimental and modeling approaches. We used isothermal culture studies of the ammonia-oxidizing thaumarchaeon *Nitrosopumilus maritimus* and modeled oceanographic parameters to explore the relationship between TEX₈₆ and growth conditions. Evidence suggests that growth rate and electron donor supply are important controls on GDGT ratios. Constraining the physiological basis of the TEX₈₆ proxy and the mechanism by which this signal is preserved in the sedimentary record is crucial in the proxy's application to ancient environments.

[1] S. Schouten, E.C. Hopmans, E. Schefuß, J.S. Sinninghe Damsté, *EPSL* **204** (2002) 265. [2] H.C. Jenkyns, A. Forster, S. Schouten, J.S. Sinninghe Damsté, *Nature* **432** (2004) 888.