Atmospheric ²¹Ne abundance determined by the Helix-MC Plus mass spectrometer

M. HONDA¹, X. ZHANG¹, D. PHILLIPS², M. DEERBERG³, J. B. SCHWIETERS³ AND D. HAMILTON^{3*}

¹Research School of Earth Sciences, The Australian National University, Canberra, Australia

(masahiko.honda@anu.edu.au, dong.zhang@anu.edu.au) ²School of Earth Sciences, The University of Melbourne,

Parkville, Australia (dphillip@unimelb.edu.au)

³Thermo Fisher Scientific, Bremen, Germany

(*correspondence: doug.hamilton@thermofisher.com)

Analyses of noble gas isotopes by multi-collector, high resolution mass spectrometry have the potential to revolutionise applications in the cosmo-geo-sciences. The Helix-MC Plus noble gas mass spectrometer installed at the Australian National University (ANU) is equipped with unique high mass resolution collectors [mass resolution (MR): ~1,800 and mass resolving power (MRP): ~8,000], including fixed axial (Ax), adjustable high mass (H2) and adjustable low mass (L2) detectors. The high mass resolution of the L2, Ax and H2 collectors permits complete separation of 20 Ne (measured on L2 detector) from doubly charged interfering 40 Ar (required MR of 1,777), ${}^{1}H^{19}F$ (MR = 1450), ${}^{1}H_{2}{}^{18}O$ (MR = 894) and partial separation of the ²¹Ne peak (on Ax detector) from interfering 20 Ne¹H (MR = 3,271), and 22 Ne (on H2 detector) from interfering doubly charged CO_2 (MR = 6,231). Because of the high MRP of ~8,000, ²¹Ne can be measured, essentially without interference from 20 Ne¹H, by setting the magnet position on a ²⁰Ne¹H interference-free position. This capability provides an important opportunity to re-evaluate the ²¹Ne abundance in the atmosphere. Our analyses demonstrate that ²⁰Ne¹H contributes ~4% to atmospheric ²¹Ne measurements, with the corresponding production ratio of ²⁰Ne¹H to ²⁰Ne being ~1E-4. We calculate a new atmospheric $^{21}\text{Ne}/^{20}\text{Ne}$ ratio of 0.00287 relative to an atmospheric ²²Ne/²⁰Ne ratio of 0.102; this new value is distinctly lower than the current IUPAC recommended ${}^{21}\text{Ne}/{}^{20}\text{Ne}$ value of 0.00298. There are several significant implications ensuing from the newly determined atmospheric ²¹Ne abundance. For example, in the area of Earth sciences the most critical issue relates to cosmogenic ²¹Ne surface exposure ages, which involve the calculation of ²¹Ne concentrations from excess ²¹Ne, relative to the atmospheric $^{21}\text{Ne}/^{20}\text{Ne}$ ratio. For young samples, where cosmogenic ^{21}Ne contents are small and the ²¹Ne/²⁰Ne ratio is close to the atmospheric value, the revised value could increase cosmogenic ²¹Ne ages by $\sim 30\%$.