Coccolith stable isotopes in palaeoceanography: Are culture data transferable to the natural environment?

MICHAËL HERMOSO1, YAËL CANDELIER2, FABRICE MINOLETTI2, THOMAS J. BROWNING3, HARRY L. O. MCCLELLAND1 AND ROSALIND E. M. RICKABY1

1University of Oxford, Earth Sciences Department, Oxford, UK (michael.hermoso@earth.ox.ac.uk)
2Université Pierre et Marie Curie (Paris 6), UMR 7193 ISTeP, Campus Jussieu, 75005 Paris, France.
3GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany.

Coccoliths represent a valuable sedimentary archive to derive palaeoenvironmental information in the pelagic realm, potentially augmenting the palaeoceanographic toolbox by complementing/supplementing widely-used foraminiferal data. A growing number of laboratory culture studies have evaluated the dynamic nature of isotopic fractionation in coccolith calcite when produced under a range of environmental manipulations [1-5]. These approaches aim to develop a mechanistic understanding of the vital effect and correct the palaeorecord for the vital effect. Furthermore, several study cases highlighted the use of the vital effects per se as potential palaeo-proxies [1] [6-7].

Here, we address the fundamental question of how such in vitro calibrations are transferable to the natural environment and ultimately to the sedimentary archive. By comparing analyses of laboratory cultures (coccolithophore algae biominerals), core top (subfossils) and downcore (calcareous nannofossils) from Pleistocene glacial-interglacial cycles, we show how a suite of critical environmental parameters (e.g. temperature, pH, DIC, nutrient availability, and light irradiance) are recorded in coccolith calcite derived from the bloom-forming and alkenone-producing Noelaerhabdaceae family (Emiliania huxleyi and Gephyrocapsa oceanica), and discuss discrepancies between these approaches.