Large variations of lithium isotopic compositions in the Congo river system trace two contrasted weathering regimes on a flat continental setting

S. HENCHIRI¹, J. GAILLARDET¹, M. DELLINGER¹², J. BOUCHEZ¹ AND R. SPENCER³

 ¹Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Univ. Paris Diderot, CNRS, F-75005 Paris
²University of Southern California, Los Angeles
³Department of Earth, Ocean & Atmospheric Science, Florida State University

Lithium and its isotopes (7 Li and 6 Li) are a promising and robust tracer of chemical weathering of continental silicate rocks. Secondary minerals formation during chemical weathering is accompanied by the preferential incorporation of 6 Li, what drives the dissolved lithium isotopic composition (δ^7 Li) of waters toward values much higher that the source rocks in general. Here, we investigate the dissolved δ^7 Li of the Congo river, the second largest watershed in the world.

Dissolved $\delta^7 \text{Li}$ at Kinshasa over the year 2010 vary from 14‰ to 22‰ and is negatively correlated with the discharge. On the basis of the relationship between dissolved $\delta^7 \text{Li}$ and both ${}^{87}\text{Sr}/{}^{86}\text{Sr}$ (a source tracer) and Li/Na, we suggest that this large variation can be explained by the mixture between waters inherited from two extreme continental weathering regimes: one end-member with high $\delta^7 \text{Li}$ (≈ 25‰) representing waters washing out from lateritic soils covering the periphery of the basin and in which Li is highly sequestered (≈ 75%) into secondary minerals products and another one represented by black rivers with low $\delta^7 \text{Li}$ (average of 5.7 ± 0.11‰, N = 2) coming from the swampy central depression in where secondary mineral products initially formed in lateritic soils are redissolved in the organic-rich upper layers of the soils.

Our results show that $\delta^7 Li$ is a conservative tracer in the Congo river system and that rivers draining flat continental areas, although typical of « transport-limited » regime can exhibit very contrasted dissolved $\delta^7 Li$ and not only low values as it is usually thought.