REPP-CO₂: Static and dynamic laboratory experiments with scCO₂

VACLAVA HAVLOVÁ^{1*}, VIT HLADIK², Dimitrios G. Hatzignatiou³ and Juraj Francu²

¹UJV Rez, a.s., Hlavni 130, Rez, 250 68 Husinec, Czech Rep. ²ČGS,branch Brno, Leitnerova 22, 658 69 Brno, Czech Rep. ³IRIS, Prof. Olav Hanssensvei 15, 4021 Stavanger, Norway

Introduction

REPP-CO2 was launched early 2015 as a joint Czech-Norwegian research project focusing primarily on the development of the CO₂ geological storage technology in the Czech Republic. The project represents a major step in the advancement towards validation by means of a pilot project in geological settings similar to possible future CO₂ storage sites.

The core part of the project focuses on the first preparatory phase of the research pilot project on CO_2 geological storage. This consists of obtaining the necessary data (geological, geophysical, well log, etc.), constructing a three-dimensional geological model of the storage complex, developing a dynamic simulation model, which will be subsequently used to model the storage complex behavior during the site's operational (CO_2 injection) phase and post-injection one, executing a risk analysis, and compiling a monitoring plan. In future stages these outcomes could be used as a basis for a future Storage Site Permit Application.

A critical element of the project, supporting the actitivies mentioned above, is the characterisation of reservoir rock and caprock behaviour under dynamic (CO_2 injection) and static (post-injection) conditions. This is addressed using both static and dynamic experiments with supercritical CO_2 (sc CO_2).

Experimental work

A detailed characterisation of both formation (reservoir and caprock) and groundwater was carried out. A representative synthetic reservoir brine (Na-Cl type) was prepared from existing analyses of deep groundwater reservoir samples.

The static experiments were based on long-term interactions of $scCO_2$ with different types of rock sample materials under CO_2 storage site conditions namely, 10 MPa pressure and 35°C temperature.

In addition, the permeability of rock samples was measured using both with water and $scCO_2$ in a dynamic (flow-through) apparatus. For both static and dynalic experiments, rock samples were thorougly characterized preand post-testing and changes in rock mineralogy, porosity and permeability were determined/quantified.

The project is supported by a grant from Norway.