Integrating noble gas and compoundspecific stable isotopes to characterize the generation and migration of oilassociated gases and H₂S in the Eagle Ford shale of Texas, USA

JACOB HARRINGTON¹, KARLIS MUEHLENBACHS², COLIN WHYTE¹, JEREMY C. WILLIAMS¹ AND THOMAS H. DARRAH¹

 ¹School of Earth Sciences, The Ohio State University, Columbus, OH 43210, USA
²Dept. of Earth and Atmospheric Sciences, University of

Alberta, Edmonton, AB, 94305, Canada

The production of unconventional shale gas and oil continue to increase in the US and abroad. The Eagle Ford Shale has been an example of an economic success story with combined production of oil, condensates, and wet gas. Despite these successes, production has been spatially variable and hampered by high H₂S contamination. Nonetheless, to date there has been a dearth of published reports on gas chemistry including compound-specific stable isotopes, noble gases, or H_2S concentrations. Here we combine compound-specific stable isotopes (C₁-C₅), the full suite of noble gas isotopes (He-Xe), and general gas compositional analyses (including H₂S) with site-specific seismic data. Our preliminary results indicate the presence of mantle-derived noble gases and carbon dioxide in producing oil and gas wells. Interestingly, with increasing mantle contributions, we identify distinctly higher maturity hydrocarbons and elevated levels of H₂S associated with local faults. Most of the Eagle Ford samples fit the Natural Gas plot (δ^{13} C vs. 1/n) with r² values better than 0.980, while those that do not, also show anomalies in their noble gases and other gases indicative of low initial fluids-inplace. The slopes of individual samples on the $\delta^{13}C$ vs. 1/n plots vary with inferred maturity and apparent mantle contributions. One prospective implication is that a single thermal pulse, the intensity of which varied regionally, generated the regulated the thermal maturity of Eagle Ford gases and the formation of H_2S via thermal sulfate reduction.