Effect of pressure on the structure of albite liquid near glass transition

S. J. GAUDIO¹, C. E. LESHER¹² AND S. SEN³

¹Department of Earth and Planetary Sciences, University of California, Davis, CA 95616, USA, (*correspondance: sjgaudio@ucdavis.edu, celesher@ucdavis.edu)

²Department of Geoscience, Aarhus University, DK-8000 Aarhus C, Denmark

³Department of Materials Science, University of California, Davis, CA 95616, USA (sbsen@ucdavis.edu)

The network structure and density of albite glasses recovered from high pressure (to 7.2 GPa) and annealing temperatures across the liquid-glass transition region (T_g) were analyzed ex situ using high-field 27Al magic-angle-spinning nuclear magnetic resonance (NMR) spectroscopy. For each pressure, ²⁷Al NMR spectra show only subtle changes in the Al-O bonding environment at temperatures ranging from T_g -100K to T_g +50K From these data, we calculate robust values for average aluminium coordination number and the mean quadrupolar coupling constant (C_q) -a proxy for the distortion and distribution of Al-O bonding environments- at fictive temperatures (T_f) near T_g. While $C_{\rm q}$ increases linearly with density and pressure, the average Al number only increases above 2.6 GPa. Interestingly, in samples annealed in the vicinity of $T_{\rm g},$ the fraction of $^{\rm [6]}{\rm Al}$ is consistent with the results of MD simulations with pressure^[1,2]. However, we find that the fraction of ^[5]Al is greater in MD simulations, reflecting the structure at temperatures >1000-3000 K higher than what is measured experimentally in glasses, where $T_{\rm f}$ is much closer to Tg. In albite and other sodium aluminosilicate liquids, high pressure-temperature simulation and experimental studies correlate maxima in O^{2-} diffusivity with either critical fractions of high-coordinated Al + Si^[1] or the onset of increasing fraction of high-coordinated Al^[3]. The possible role of such structural controls on transport properties with pressure will will be discussed over all temperatures where liquid-like behavior exists.

[1] Bryce et al. (1999) *Am Min.* **84**, 345-356 [2]Suzuki et al. (2002) *Phys. Chem. Min.*, **29**, 159-164. [3] Wang et al. (2014) *Nat. Commun.* **5**, doi:10.1038/ncomms4241.