960

On the use of Zn²⁺ to trace the reaction progress of forsterite hydration

HELGE HELLEVANG¹ AND ANNA NEUBECK²

¹Department of Geosciences, University of Oslo, Norway
²Department of Geological Sciences, Stockholm University, Sweden

Closed-system forsterite hydration leads rapidly to the formation of secondary talc, serpentine, brucite and Fe-oxides (magnetite, hematite), oxidation of Fe^{2+} and the splitting of H_2O into molecular hydrogen [1, 2]. The amount of hydrogen generation depends on how much of the released Fe^{2+} that is oxidized and incorporated into the secondary minerals. This amount is not always easy to trace, and the potential for hydrogen generation may therefore be difficult to predict.

We suggest to use trace metals released from olivine to track the rate and amount of Fe^{2+} released, and to compare this to the amount of hydrogen generated. In our first experiments we used the release of Zn^{2+} from Fo96 (Åheim mine, Norway) and estimated the concentration (mole fraction) in the olivine to be approximately 260 ppm. In our low-temperature batch experiments (30, 50, and 70°C) we observed a rapid initial leaching of Zn^{2+} followed by a linear release (Fig. 1a). Molecular hydrogen was suggested to form at the highest temperature, also with an initial rapid generation followed by a linear increase in the batch reactors (Fig. 1b) [3]. In the next step, we will use Henry's law, aqueous solution and head-space volumes, the measured hydrogen concentraion, and the estimated released Fe^{2+} to estimate the fraction of Fe^{2+} oxidized and incorporated into the secondary minerals.

Fig. 1. Batch olivine hydration experiment: (a) Zn2+ concentrations; and (b) gas-phase hydrogen concentration.

Hellevang, H. 2008. Int. J. Astrobiology 7, 157; [2]
 McCollom, T.M., Bach, W. 2009. GCA 73, 856; [3] Neubeck,
 A., et al accepted. Planet. Space Sci.