Long-term Stability of the Carbonate Compensation Depth Across the Late Paleocene-Early Eocene Warming Trend

S.E. Greene1*, A.J. Ridgwell2, S. Kirtland Turner1, D.N. Schmidt2, H. Pälike3 and E. Thomas4

1BRIDGE, School of Geographical Sciences, University of Bristol, Bristol, UK; *corresponding author: sarah.greene@bristol.ac.uk
2School of Earth Sciences, University of Bristol, Bristol, UK
3MARUM–Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
4Department of Geology and Geophysics, Yale University, New Haven, CT, USA

The carbonate compensation depth (CCD) is the sedimentary expression of the balance between the rate of biogenic carbonate deposition and carbonate dissolution in the ocean. As such, the CCD is used as a powerful palaeoenvironmental constraint for past global carbon cycle reconstructions. Using weight percent carbonate data from nearly 80 DSDP/ODP/IODP drilling sites, we reconstruct the behavior of the CCD for three snapshots spanning a pronounced, long-term late Paleocene through early Eocene warming trend (~59 Ma to ~49 Ma). Across this interval, the CCD is relatively deep (≥~3500 m), and indistinguishable between the three investigated snapshots once the errors associated with paleodepth reconstruction are taken into account. Assuming the long-term late Paleocene – early Eocene warming trend was accompanied by an increase in atmospheric CO2 concentration and increased global weathering rate, the observed CCD stability refutes the popular notion that the position of the CCD is responsive to weathering and closely tied to deep sea carbonate burial rates. Indeed, modelling results using the Earth system model GENIE indicate that high atmospheric CO2 concentrations coupled with high weathering rates, as expected, yields higher overall deep sea carbonate burial rates. However, the ‘action’ occurs at the lysoclcline, the distance of which from the CCD fluctuates freely as a function of weathering rate and hypsometry.