Helium Isotopic Textures in Earth's Upper Mantle

D. W. GRAHAM¹*, B. B. HANAN², C. HÉMOND³, J. BLICHERT-TOFT⁴ AND F. ALBARÈDE⁴

¹College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR 97331, USA (*dgraham@coas.oregonstate.edu)

²Department of Geological Sciences, San Diego State University, San Diego, CA 92182, USA

³UMR 6538 Université de Bretagne Occidentale-CNRS, 29280 Plouzané, France

⁴Ecole Normale Supérieure de Lyon, CNRS UMR 5276, 46 Allée d'Italie, 69007 Lyon, France

We report ³He/⁴He for a suite of 150 mid-ocean ridge basalt (MORB) glasses, collected at 5-10 km intervals along the Southeast Indian Ridge (SEIR). Between 81-101°E, $^{3}\text{He}/^{4}\text{He}$ varies from 7.3 to 10.2 $R_{A},$ encompassing more than half the MORB range away from island hotspots. Abrupt transitions occur in ³He/⁴He; in one case the full range occurs over ~ 10 km distance, indicating significant He isotope variability in the upper mantle at this scale. Melting of lithologically heterogeneous mantle, containing a few percent garnet pyroxenite, produces lower ³He/⁴He ratios; ³He/⁴He above $\sim 9 R_{A}$ likely indicates a pyroxenite-free mantle source. Patterns in spectra of the length scale of variability represent a description of helium isotopic "texture". We use three complementary approaches; periodogram, red-noise spectral estimation ("Redfit"), and continuous wavelet transform (CWT). Long-wavelength "lobes" are present in the periodogram, similar to "hotspot type" spectra in the Atlantic. Redfit and CWT also reveal prominent and decreasing power at ~1000 km, ~500 km and ~250 km. The densely sampled region of the SEIR by itself shows significant power at ~30 km, similar to the scale inferred from Hf and Pb isotopes in the same suite. ³He/⁴He at intermediate scales may show overtones of the 1000 and 500 km fundamental periods, but they are not as well resolved. At 500-1000 km length scales, wavelet transform coherence reveals that ³He/⁴He varies in-phase with axial depth along the SEIR. This suggests a coupling between melt production and ³He/⁴He, probably due to lateral variations in upper mantle potential temperature related to convective upwelling. Collectively, our results show that ${}^{3}\text{He}/{}^{4}\text{He}$ is controlled both by source heterogeneity associated with folding and stretching of material lines ("marble-cake" mantle) during plate-scale flow, and by variations in melting in response to secondary convection.