Uranium isotope in ferromanganese crusts: Implications for the marine ²³⁸U/²³⁵U isotope system

Kosuke T. Goto¹, Ariel D. Anbar²*, Gwyneth W. Gordon², Stephen J. Romaniello², Gen Shimoda¹, Yutaro Takaya³, Ayaka Tokumaru³, Tatsuo Nozaki⁴, Katsuhiko Suzuki⁴, Shiki Machida⁵, Takeshi Hanyu⁴ and Akira Usui⁶

¹GSJ, AIST, Tsukuba, Ibaraki 305-8567, Japan
²Arizona State University, Tempe, AZ 85287, USA, anbar@asu.edu (* presenting author)
³University of Tokyo, Bukyo-ku, Tokyo 113-0033, Japan
⁴JAMSTEC, Yokosuka, Kanagawa 237-0061, Japan
⁵Waseda University, Shinjuku-ku, Tokyo 169-8555, Japan
⁶Kochi University, Kochi, Kochi 780-8520, Japan

Variations of ${}^{238}\text{U}/{}^{235}\text{U}$ ($\delta^{238}\text{U}$) in sedimentary rocks have been proposed as a proxy for paleo-oceanic redox conditions [1, 2]. To better understand the marine $\delta^{238}\text{U}$ system, we investigated spatial and temporal variation of $\delta^{238}\text{U}$ in ferromanganese crusts from the Pacific Ocean.

In the surface layers (0-3 mm depth) from 6 seamounts, δ^{238} U shows little variation, ranging from -0.59 to -0.65‰. This uniformity is consistent with the long residence time of U in modern seawater. δ^{238} U in these sediments is lighter than that of present-day seawater by ~0.24‰ [1, 2], consistent with fractionation experiments [3]. These results suggest that removal of U from seawater to Fe-Mn crusts is responsible for the second largest U isotopic fractionation in the modern marine system, and helps explain the heavy δ^{238} U of seawater.

Depth profiles of δ^{238} U in two ferromanganese crusts were also investigated. δ^{238} U shows no resolvable variation over a depth corresponding to 40 Myr. One interpretation of these data is, that the relative proportions of oxic and reducing U sinks have not varied significantly over this time. However, δ^{234} U depth profiles in the same sediments suggest U redistribution after deposition. Therefore, δ^{238} U may have been overprinted by secondary mobilization.

To assess the potential effect of U removal by Mn oxides on seawater δ^{238} U, we calculated the seawater δ^{238} U under different fractions of U removal by Mn oxides using a simple isotope balance model. This calculation suggests that seawater δ^{238} U could have varied significantly throughout Earth's history along with the changes of the Mn oxides accumulation rate.

[1] Stirling *et al* 2007 *EPSL* **264**, 208–225. [2] Weyer *et al* 2008 *GCA* **72**, 345–359. [3] Brennecka *et al* 2011 *ES&T* **45**, 1370-1375.