Monitoring the life histories of animifalia using LA-MC-ICP-MS measurements of ⁸⁷Sr/⁸⁶Sr in otoliths, bones, fin rays, scales and teeth.

JUSTIN J. G. GLESSNER¹, JAMES A. HOBBS², JOSH B. WIMPENNY³AND SCOTT A. CARLETON⁴

 ¹Interdisciplinary Center for Plasma Mass Spectrometry – University of California, Davis, CA, USA
² Wildlife and Fisheries Biology, UC-Davis, CA, USA
³Earth and Planetary Sciences, UC-Davis, CA USA
³U.S Geological Survey – New Mexico Cooperative Fish and Wildlife Research Unit - Las Cruces, NM, USA

Alkaline earth metals (Mg, Sr, Ba) and strontium istopic compositions (87Sr/86Sr) are used as biomarkers for tracing life histories in fish. These compositions are typically measured through laser ablation plasma source mass spectrometry (LA-ICP-MS and LA-MC-ICP-MS) of fish otoliths. Otoliths accrete chronologically and record changes in habitat, temperature, movement and diet. The spatial resolution needed to resolve these changes may vary with the size and growth rate of the otolith but generally falls between 20 - 60 microns. In some cases, such as in cartilaginous fish, otoliths don't form periodic structures. Additionally, harvesting an otolith is an inherently destructive method, killing the fish. For these reasons, and because laser ablation is cheaper and faster than alternatives, exploration into other types of biologically-derived minerals such as fin rays, scales and teeth may be advantageous for certain types of fish and biomarking other marine and terrestrial animifalia.

LA-MC-ICP-MS methods measuring ⁸⁷Sr/⁸⁶Sr in bones and teeth have been conducted in previous studies with archeological human [1] and modern rat teeth [2]. Generally compared to carbonates, measurement of biophosphate minerals pose greater analytical uncertainty due to lesser Sr and greater Rb concentrations, more matrix complexity (ie. organics such as proteins), spatial heterogenity, and formation of the ⁴⁰Ca³¹P¹⁶O⁺ molecular isobar. Preliminary laser ablation testing of white and green sturgeon fin rays and leopard shark teeth have shown excellent agreement with purified solution (difference < 0.0001 ⁸⁷Sr/⁸⁶Sr.) The ⁴⁰Ca³¹P¹⁶O⁺ isobar may be attenuated by simple adjustment to the ion sampling depth of the plasma. Addition of nitrogen in the carrier gas and lessening RF power (cool plasma) operation may also reduce oxide formation, decreasing artifact.

[1] Simonetti *et al* 2008, Archaemetry **50**, 2 371-385 [2] Copeland *et al* 2008, *Rap. Com. Mass Spect.* **22**: 3187-3194