Constraints on the N isotopic evolution of the solar nebula from volatile analyses of a CAI

E. FÜR1*, M. CHAUSSIDON2 AND B. MARTY1

1CPRG-CNRS, BP20, Vandouvre-les-Nancy, France
(*correspondence: efueri@crpg.cnrs-nancy.fr)
2IPGP, Paris, France

Isotopic analyses of osbornite (TiN), considered as the first solid nitrogen-bearing phase to condensate in the cooling nebula, indicated that the protosolar nebula (PSN) was highly depleted in 15N compared to the terrestrial atmosphere [1]. Results from NASA’s Genesis mission confirmed the very low 15N/14N ratio of the Sun and the PSN (δ^{15}N$_{PSN} = -383 \pm 8$ ‰ [2]). All other Solar System objects (with the exception of Jupiter) are enriched in 15N compared to the PSN, possibly as a result of i) N_2 photochemical self-shielding [e.g., 3] or ii) low temperature isotopic exchanges [4].

Since early-formed solids such as refractory Ca,Al-rich inclusions (CAIs) may retain a record of the nitrogen isotopic evolution of the nebula, we investigate here the N and noble gas (Ne-Ar) abundance and isotopic signature of a large (~4 cm in diameter) coarse-grained type B CAI from a CV3 chondrite by CO$_2$ extraction-static mass spectrometry analysis. In addition, we determined the O and Al-Mg isotope characteristics of the inclusion by SIMS analysis.

Although the CAI crystallized near “time zero” of Solar System history, as shown by its canonical-like (26Al/27Al) value of $(5.06 \pm 0.50) \times 10^{-5}$, it experienced later partial isotopic exchange with a 16O-poor reservoir, resulting in large oxygen isotope variations among its constituent minerals. Mellilite and anorthite are 16O-poor (Δ^{17}O > -5‰), whereas spinel and fassaite retain the original 16O-rich signature of the solar nebula (Δ^{17}O ≤ -20 ‰). The low 20Ne/22Ne (≤ 0.83) and 36Ar/38Ar (≤ 0.82) ratios rule out the presence of any trapped planetary or solar noble gases, and the abundances of cosmogenic 21Ne and 38Ar are consistent with a cosmic ray exposure age of a few to a few tens of millions of years. Strikingly, the CAI contains 1.4 to 3.4 ppm N_2 with a δ^{15}N value of 8 to 30 ‰. Even after correcting the measured 15N/14N ratios for cosmogenic 15N produced in-situ, the δ^{15}N values resemble the isotopic signatures of chondritic meteorites, suggesting that mixing of the PSN with a 15N-enriched reservoir occurred at very early times.