Constraints on the N isotopic evolution of the solar nebula from volatile analyses of a CAI

E. FÜRI^{1*}, M. CHAUSSIDON² AND B. MARTY¹

 ¹CPRG-CNRS, BP20, Vandoeuvre-les-Nancy, France (*correspondence: efueri@crpg.cnrs-nancy.fr)
²IPGP, Paris, France

Isotopic analyses of osbornite (TiN), considered as the first solid nitrogen-bearing phase to condensate in the cooling nebula, indicated that the protosolar nebula (PSN) was highly depleted in ¹⁵N compared to the terrestrial atmosphere [1]. Results from NASA's Genesis mission confirmed the very low ¹⁵N/¹⁴N ratio of the Sun and the PSN ($\delta^{15}N_{PSN} = -383 \pm 8 \%$ [2]). All other Solar System objects (with the exception of Jupiter) are enriched in ¹⁵N compared to the PSN, possibly as a result of i) N₂ photochemical self-shielding [e.g., 3] or ii) low temperature isotopic exchanges [4].

Since early-formed solids such as refractory Ca,Al-rich inclusions (CAIs) may retain a record of the nitrogen isotopic evolution of the nebula, we investigate here the N and noble gas (Ne-Ar) abundance and isotopic signature of a large (\sim 4 cm in diameter) coarse-grained type B CAI from a CV3 chondrite by CO₂ extraction-static mass spectrometry analysis. In addition, we determined the O and Al-Mg isotope characteristics of the inclusion by SIMS analysis.

Although the CAI crystallized near "time zero" of Solar System history, as shown by its canonical-like (²⁶Al/²⁷Al)_i value of $(5.06 \pm 0.50) \times 10^{-5}$, it experienced later partial isotopic exchange with a ¹⁶O-poor reservoir, resulting in large oxygen isotope variations among its constituent minerals. Melilite and anorthite are ¹⁶O-poor (Δ^{17} O > -5‰), whereas spinel and fassaite retain the original ¹⁶O-rich signature of the solar nebula (Δ^{17} O \leq -20 ‰). The low 20 Ne/ 22 Ne (\leq 0.83) and 36 Ar/ 38 Ar (≤ 0.82) ratios rule out the presence of any trapped planetary or solar noble gases, and the abundances of cosmogenic ²¹Ne and ³⁸Ar are consistent with a cosmic ray exposure age of a few to a few tens of millions of years. Strikingly, the CAI contains 1.4 to 3.4 ppm N_2 with a $\delta^{15}N$ value of 8 to 30 ‰. Even after correcting the measured ¹⁵N/¹⁴N ratios for cosmogenic ^{15}N produced in-situ, the $\delta^{15}N$ values resemble the isotopic signatures of chondritic meteorites, suggesting that mixing of the PSN with a ¹⁵N-enriched reservoir occurred at very early times.

Meibom et al (2007) ApJ 656, L33-L36. [2] Marty et al (2011) Science 332, 1533-1536. [3] Lyons et al (2009) GCA 73, 4998-5017. [4] Terzieva and Herbst (2000) MNRAS 317, 563-568.