Arsenic mobility in soil of Paracatu

M. M. FERREIRA^{1*}, S. R. PATCHINEELAM¹, Z. C. CASTILHOS², J. GERTH³ AND W. CALMANO³

¹Environmental Geochemistry Department, Fluminense Federal University, Niteroi, RJ, Brazil (*marcosferreira@id.uff.br)

²Center for Mineral Technology, Ministry of Science and *Technology*, Rio de Janeiro, RJ, Brazil

³Institute for Environmental Technology and Energy Economics, Technical University of Hamburg-Harburg, HH, Germany

Introduction

The mobility and the bioavailability of arsenic is influenced by a particular solid phase of which it is associated. Based in the concepts of natural attenuation/intrinsic remediation [1], this study estimate the potential arsenic mobility and release by a sequential extraction method [2] and column leaching tests [3] in 3 samples of contaminated soils. The samples used in this work were collected around a gold mine area, in the Paracatu city, Minas Gerais, SE Brazil.

Results

Table 1: Arsenic speciation obtained by the sequential extraction method (mg.kg⁻¹ dry weight).

Step / Sample	P1 Soil	P2 Soil	P3 Soil
Exchang. Ions	0.3	< L.D.	< L.D.
Carbonates	1.1	0.7	< L.D.
Mn Oxides	0.5	0.5	0.1
Amorphic Fe Oxi.	265.9	219.0	2.9
Sulphides and Org.Mat.	< L.D.	1.9	< L.D.
Metals Bound in Lithog. Mat.	943.3	356.2	927.6

Table 2: Arsenic concentrations in leaching extracts ($\mu g.L^{-1}$).

Table 2. Auseine concentrations in leaching extracts (µg.E						
Leaching	Time (h)	P1 Soil	P2 Soil	P3 Soil		
Deinonized Water	24	18.9	14.0	16.9		
Deinonized Water	72	13.6	10.1	16.7		
Calcium Chloride 0,01 M	192	< L.D.	< L.D.	< L.D.		
Calcium Chloride 0,01 M	336	< L.D.	< L.D.	< L.D.		
Deinonized Water	384	4.6	7.5	6.1		
Deinonized Water	408	2.8	3.7	9.5		

The sequential extraction results indicate that the presence of As is in a form less available in the soil, binding to iron oxides and compounds partially oxidized from the original mineral. Leaching tests clearly show a retaining process of arsenic with the addition of calcium chloride solutions. For a more conclusive evaluation about the process described here, further studies are currently being carried out.

[1] Gerth et al (2001), Treatment of Contaminated soil, 603-614. [2] Salomons & Förstner (1980) Environ. Tech. Lett. 1:506–518. [3] Dankwarth et al. (2000). In: 11th ICHMET, 1277.