Controls of oxygen fugacity on trace element diffusion in rutile

R DOHMENT, J POLEDNIA, HR MARSHALL, AND T LUDWIG

1Inst Geol Min Geophys, Ruhr-University Bochum, ralf.dohmen@rub.de
2WHOI, USA, hmarshall@whoi.edu
3Inst Geowissenschaften, Uni Heidelberg,

Rutile is a key mineral in petrology and geochemistry. For example rutile [Zr] is used as a thermometer and the budgets of Nb and Ta in crustal and mantle rocks are commonly controlled by rutile. Recently, we demonstrated that Nb and Ta can fractionate significantly by diffusion in rutile during partial melting [1]. We extended our experimental study to the variation of Zr, Hf, Nb, and Ta diffusion in synthetic rutile as a function of f_{O_2}, and T employing the same methods as in [1]. Diffusion anneals were carried out at $P = 0.1$ MPa in gas mixing furnaces at controlled f_{O_2} (IW to NNO, and air). Depth profiles of the diffusion couples were measured using a Cameca ims 3f ion microprobe, and fitted numerically.

The diffusion coefficients determined so far at $f_{O_2} = WM$ show the following: D(Nb) and D(Ta) are consistent with [1] and D(Zr) is indistinguishable from D(Nb). The significant difference between diffusion of Nb and Ta is confirmed and our new results indicate a slightly higher activation energy for D(Ta) compared to D(Nb). D(Hf) is a factor of ~2 smaller than D(Zr) indicating a weaker diffusive fractionation of Zr-Hf compared to Nb-Ta in rutile. Preliminary data indicate that rutile diffusion coefficients determined here are strongly sensitive to f_{O_2}. For example, at 1080 °C, D(Nb) at atmospheric f_{O_2} is a factor of ~100 smaller compared to WM. D(Zr) and D(Hf) determined for the $f_{O_2} = WM$ deviate significantly from the results of [2], who did not find any significant f_{O_2} dependence for Zr and Hf diffusion. Our data are more consistent with Zr diffusion coefficients of [3].

The diffusion coefficients of the studied HFSE and their dependence on f_{O_2} can be interpreted in terms of the point defect chemistry of TiO$_2$, which is a non-stoichiometric phase better described by the formula TiO$_2$$_x$, where x depends on f_{O_2} (e.g., [3]). The observed f_{O_2} dependence is consistent with a vacancy diffusion mechanism. For a given f_{O_2}, a critical level of heterovalent substitution of Ti exists (e.g., by Al$^{3+}$, Fe$^{3+}$) at which the concentration of Ti vacancies is affected. Calculations based on point defect thermodynamics will be presented to illustrate these effects.