CryMinal – the Software for Simulation of Equilibrium Crystallization

D. BYCHKOV* AND E. KOPTEV-DVORNIKOV

Moscow State Univ., Moscow, Russia (*correspondence: dmibychkov@gmail.com, ekoptev@geol.msu.ru)

CryMinal created for simulation of mafic magmas equilibrium **Cry**stallization using sum of **Minals** (endmembers) mole fractions as target function. Concentrations of minals in the minerals are calculated using equilibrium constants. As an example, here is the equation for enstatite $MgSiO_3$ (En) minal:

$X_{En} = \exp((A + \beta P)/T + B + D \lg f_{O_2} + \sum J_i X_i + \ln \alpha *_{MgO} + \ln \alpha *_{SiO2}),$

where X_{En} is the value of the enstatite mole fraction, *P* is the pressure in kb, *T* is the absolute temperature in Kelvins, fO_2 is the oxygen fugacity, X_i is the mole fraction of i-th component of the melt. *A*, β , *C*, *D*, *E*, *F*, and J_i are the coefficients for corresponding variables, *B* is the constant, a *activity of the initial components in the melt according to network modifiers - network formers model of silicate melt.

The figure shows the comparison of calculated and experimental liquidus temperature (T_L) . In experimental series, we see a deviation from the monotonous increase of T_L with increasing pressure. In the calculations, these deviations are reproduced by changes fo_2 .

P-T diagram for liquidus relations in experimental series: A – [1]; B – [2]; C – [3]; D – [4].

[1] Bender et al (1978), Earth and Planet. Sci. Lett. 41, 277-302 [2] Takahahshi et al (1998), Earth and Planet. Sci. Lett. 162, 63-80 [3] Falloon et al (1999), J. Petrol., 40, 255-277 [4] Thy, (1991), Lithos, 26, 223-243