Reactivity of Tc at the Groundwater-Surface Water Interface

JOHN M. ZACHARA¹*, JIM FREDRICKSON¹ AND JIM MCKINLEY¹

¹Pacific Northwest National Laboratory, Richland, WA 99352 (*correspondence: john.zachara@pnnl.gov)

Technetium-99 ($t^{1/2}$ =211,000y) is mobile in the environment as the pertechnetate oxyanion [⁹⁹Tc(VII)O₄ (aq)]. Tc(VII) may react to less soluble Tc(IV) at intermediate redox potentials (E° = -0.36 V) through heterogeneous reduction. ⁹⁹Tc is forecast to migrate through groundwater to the Columbia River at the U.S. DOE Hanford site in Washington State. Discharge to surface water will occur through a groundwater-surface water interaction zone with complex hydrogeology and biogeochemistry The reactivity of pertechnetate in reduced sediments from this zone was investigated to determine effects of ferrous-Fe and sulfide-S on Tc(VII) reduction rate, and the resulting speciation and mineral association.

 $^{99}\mathrm{Tc}(\mathrm{VII})$ was reduced to near or below detection over periods of days to months. Tc(VII) reduction rate was first order in $[\mathrm{Tc}(\mathrm{VII})]_{aq}$ and sediment mass, but correlations with specific reductant concentrations [(Fe(II), AVS] were not found. Tc(IV) was isolated to aggregates of primary mineral material embedded within a fine-grained phyllosilicate matrix. EXAFS revealed that product Tc(IV) existed as combinations of a Tc(IV)O2-like phase ,Tc(IV)-Fe surface clusters, and/or TcSx. AVS was implicated as a more selective reductant. Aggregates were reaction centers in the coarse-textured sediments regardless of the dominant anoxic biogeochemical process.