Fluid Inclusions in Gold-Rich Ores of the Dongping Gold Deposit, China

 $\begin{array}{c} J.\,H.\,X{\rm U}^{1*},G.\,R.Z{\rm HANG}^1,X.\,X{\rm IAO}^2,H.\,F.\,Y{\rm ANG}^1\\ {\rm AND}\,H.W{\rm El}^1 \end{array}$

 ¹University of Science and Technology Beijing, Beijing 100083, China (*jiuhuaxu@ces.ustb.edu.cn)
²Inner Mongolia University, Hohhot 010021, China

Located 50km east to Zhangjiakou city, the Dongping gold deposit (152Ma) [1] is the largest one in North China Craton. The gold-bearing vein systems are mainly hosted in Hercynian Shuiquangou alkaline complex (390Ma) [2], and a few in metamorphic Archean Chongli group. The main gold mineralizing stages are stage II and III among four stages, that is, pyrite-quartz stage (II) and polymetallic sulphides (chalcopyrite, pyrite, galena) –smoky quartz stage (III). Visible gold grains can be seen in stage III, which occur in tiny pyrite-grey quartz veins filling in fractures of early white quartz veins. H_2O-CO_2 fluid inclusions are abundant in smoky grey quartz near gold grains (Fig.1).

Figure 1 Fluid inclusions in gold-rich quartz veins A- A gold grain and fluid inclusions in stage II quartz; B-Exposed surface of a gold grain; C- H₂O-CO₂ inclusions in area C of the photo A

Micro thermometry shows that the bubbles in H₂O-CO₂ fluid inclusions are mainly vapor CO₂; a few H₂O-CO₂ inclusions have thin films of liquid CO₂ around bubbles, with -58.3~-57.6°Cof Tm_{xCO2} and 27.8~30.9°C of Th_{xCO2}. The densities of CO₂ phases in H₂O-CO₂ inclusions are 0.58~0.67g/cm³. The total homegenization temperatures (Th,tot) are 191°C-373°C, and mainly between 290 ~ 330°C. The melting temperatures of ice (Tm_{xice}) are -5.6 ~ -0.8°C, and the melting temperatures of clathrate are 8.5 ~ 9.1°C, resulting in 1.2-8.7%NaCleqv of the salinities and 0.60-0.92 g/cm³ of densities. According to the critical temperatures of H₂O-CO₂-NaCl system [3], critical pressures of the fluids are 70-160MPa. In conclusion, gold-rich ores were emplaced under at least 2.8km of a depth based on lithostatic pressures.

[1] Hart et al (2002) Mineralium Deposita **37**, 326-351. [2] MAO et al (2003) Economic Geology **98**, 517-534. [3] Frantz et al (1992) Chem Geol **69**, 235-244.