A record of middle to late Miocene CO₂ decrease from the Tianshui Basin, Gansu, China

D. O. BREECKER¹*, S. JI² AND J. NIE²

¹Dept. Geol. Sci., UT Austin, Austin, TX 78712, USA

(*correspondence: breecker@jsg.utexas.edu)

²Research School of Arid Envir. & Climate Change, Lanzhou Univ., Lanzhou, Gansu Province 730000, China

(jisc11@lzu.edu.cn, jnie@lzu.edu.cn)

A decline in the concentration of atmospheric CO_2 is hypothesized to have driven cooling, Antarctic ice sheet growth and the global expansion of C_4 vegetation during the late Miocne. However, existing records conflict on the direction of CO_2 change from the middle-to-late Miocene. We report a paleosol carbonate-based atmospheric CO_2 record showing pronounced CO_2 decrease from 17-8 Ma, supporting the interpretation that late Miocene paleoenvironmental change was triggered, or at least accommodated, by CO_2 decrease.

Carbonate nodules were sampled from the paleosols preserved in the fluvio-lacustrine depositional sequences of the Tianshui Basin, Gansu, China, which have a deposit age of 17-6 Ma based on magnetostratigraphy. These paleosols are characterized by 0.5-2m thick Bk horizons bearing carbonate nodules and/or rhizoliths and, near the bottom of the section, well-preserved roots up to 0.5 cm in diameter. We measured the δ^{13} C values of carbonate nodules collected > 20 cm below the top of Bk horizons. We also measured δ^{13} C values of organic matter occluded in carbonates.

The δ^{13} C values of paleosol carbonate nodules decrease from -4.0 ± 0.2 ‰ (1 σ , n=3) at 16.5-17 Ma to -8‰ at 8 Ma whereas the δ^{13} C values of occluded organic matter average -25.5 ± 0.5 ‰ (1 σ , n= 8) with no trend. Assuming the calcium carbonates formed at 25°C and using contemporaneous δ^{13} C values of atmospheric CO₂ from [1], calculated values of R =(δ^{13} C_s - 1.0044(δ^{13} C_r) - 4.4)/(δ^{13} C_a- δ^{13} C_s) [2] decrease by 3 fold from 17 to 8 Ma. Using a distribution of *S*(*z*) values (soilrespired CO₂ concentrations [2]) determined from modern Aridisols [3,4], our best values suggest atmospheric CO₂ decreased from 600 to 200 ppmV from 17 to 8 Ma. Consideration of uncertainties on each CO₂ determination results in 88% probability of CO₂ decrease across the interval.

[1] Tipple et al (2010) Paleoceanography 25, PA3202. [2]
Cerling (1991) AJS 291, 377-400 [3] Moñtanez (2013) GCA
101, 57-75 [4] Breecker (2013) Geochem Geophys Geosys 14, 3210-3220