Mining environments as models for enhanced weathering: Lessons for understanding element cycling during CO$_2$ sequestration

S.A. WILSON1, I.M. POWER2, A.L. HARRISON2, G.M. DIPPLE2, J.L. HAMILTON1, B. MORGAN1,3, C.C. TURVEY1 AND G. SOUTHAM4

1School of Geosciences, Monash Univ., Clayton, VIC 3800, Australia (*correspondence: sasha.wilson@monash.edu)
2Mineral Deposit Research Unit, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
3CSIRO Process Science & Engineering, Clayton South, VIC 3169, Australia
4School of Earth Sciences, The University of Queensland, St Lucia, QLD 4072, Australia

Enhanced weathering seeks to capitalize on the high reactivity of olivine, serpentine and alkaline earth hydroxide minerals with Earth’s atmosphere as a means of trapping and storing CO$_2$ pollution within carbonate minerals [1, 2]. Weathering of Mg-silicates provides the requisite cation supply for production of Mg-carbonate minerals; however, utilisation of this process for CO$_2$ sequestration has potential to release large amounts of silica and potentially hazardous trace metal phases to the biosphere and hydrosphere [2].

Carbonation of the finely pulverised tailings produced by ultramafic-hosted mineral deposits may be leveraged by the minerals industry to offset its greenhouse gas emissions [3]. Furthermore, in the absence of demonstration scale deployments of enhanced weathering, mine tailings storage facilities represent useful analogues.

Here, we describe geochemical pathways for, and controls on, element cycling during Mg-silicate weathering in the context of several ultramafic-hosted mines in Australia and Canada. We use a combined observational, experimental and modelling approach to quantify element cycling, including rates of carbon mineralisation [4]. Our field-based observations and laboratory experiments demonstrate that during accelerated weathering: (1) uptake of silica by the biosphere (e.g., diatoms) is a significant sink for Si [5] and (2) Mg-carbonate weathering products have the previously unidentified capacity to sequester toxic trace metals in addition to CO$_2$. Thus, these same sinks will likely play an important role in managing element cycling in enhanced weathering systems.