ANDREW R. WHITEHILL^{1,*}, CHANGJIAN XIE², XIXI HU², DANQIAN XIE², HUA GUO³ AND SHUHEI ONO¹

¹Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA

²Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China

³Department of Chemistry and Chemical Biology, University of New Mexico, Alburquerque, NM, USA *Correspondance to: arwhite@mit.edu

Sulfur dioxide is known to produce different patterns of sulfur mass-independent isotope fractionation (S-MIF) in two different absorption bands. SO₂ photolysis at wavelengths between 180 and 220 nm produces significant S-MIF only at high optical densities (>10⁻¹⁶ molecules/cm²), suggesting a dominant contribution from optical shielding effects[1]. Both mass-dependent and mass-independent isotope effects become larger at higher SO₂ column densities (up to optical saturation) and at lower temperatures. Mass-dependent isotope effects are consistent with cross-section calculations. SO₂ photolysis occurs due to coupling of a bound state (¹B₂) with the dissociative continuum of the ground state (¹A₁) [2]. The high density of states in the ¹A₁ state makes it unlikely that there is a considerable difference in photolysis quantum yields between isotopologues.

In contrast, photoexcitation of SO₂ in the 250 to 350 nm region produces S-MIF that is not due to self-shielding. Its pattern differs considerably from that predicted by cross-sections. Photoexcitation produces larger S-MIF signatures at lower SO₂ pressures and produces very large S-MIF signatures even under optically thin conditions. The isotope effects in this absorption region are due to an isotopologue-specific dependence on intersystem crossing rates between the excited singlet (coupled ${}^{1}B_{1}{}^{1}A_{2}$) states and reactive triplet (${}^{3}B_{1}$) states [3], both of which have a low density of states in the crossing region.

Understanding the mechanisms for the production of massindependent fractionation allows us to predict other molecules that might display similar effects (e.g. CS_2 and SO) and explain the mechanism responsible for the production of S-MIF signatures in the modern atmosphere [4].

[1] Ono et al (2013) J. Geophys. Res. Atmos. 118, 2444 [2]
Katagiri et al (1997) J. Molec. Struct. 413-414, 589 [3]
Whitehill et al (2013) PNAS 110, 17697 [4] Savarino et al (2003) Geophys. Res. Lett. 30, 2131