Coastal carbon dynamics in Siberian-Arctic shelf waters

JORIEN E. VONK^{1,2,3}*, IGOR P. SEMILETOV^{4,5}, Oleg P. Dudarev⁵, Timothy I. Eglinton² AND ÖRJAN GUSTAFSSON¹

¹Stockholm University, Dept. of Applied Environmental Science and Bolin Centre for Climate Research, Stockholm, Sweden

²Swiss Federal Institute of Technology (ETH), Geological Institute, Zürich, Switzerland

³Utrecht University, Department of Earth Sciences, Utrecht, The Netherlands

⁴Pacific Oceanological Institute, Russian Academy of Sciences, Vladivostok, Russia

⁵International Arctic Research Center, University of Alaska Fairbanks, Fairbank, US

* Correspondence: j.e.vonk@uu.nl

Northern permafrost regions store ca. 50% of the total belowground soil organic carbon (OC) pool¹ and are currently subject to intense climate warming. The shallow coastal region of the East Siberian Arctic Shelf (ESAS) is heavily influenced by terrestrial OC input, both from coastal erosion² and rivers. Recent increases in permafrost thaw and river discharge, along with a decrease in ice cover, impact terrestrial OC fluxes, but our understanding on transport and fate of terrestrial OC in shelf waters is still limited.

During the International Siberian Shelf Study-2008 we collected surface suspended particulate matter (SPM), sinking SPM, and surface sediments throughout the ESAS. Previous results³ highlight the globally-unusual observation that, despite the shallow water column (10-40m), surface sediment OM is older yet less degraded than surface suspended OM.

We show here that radiocarbon ages of bulk OC increase from surface SPM (3.0 ± 2.5 ¹⁴C-ky; mean±stdev) and sinking SPM (3.2 ± 1.5 ¹⁴C-ky; younger) to surface sediments (7.9 ± 3 ¹⁴C-ky), suggesting a release of pre-aged permafrost OC, and preferential settling of older, mineral-bound OC. Additionally, radiocarbon ages of lipid biomarkers, serving as tracers for terrestrial permafrost OC, were ¹⁴C-dated in surface SPM (ranging from 5.1 to 13 ¹⁴C-ky) and in surface sediments (5.5to 18 ¹⁴C-ky). Lipid biomarker ages in surface SPM and surface sediment are older with increasing distance from Lena River, and with closer proximity to active coastal erosion sites.

TARNOCAI *et al.*, 2009. Global Biogeochem. Cycles 23
VONK *et al* 2012. *Nature* 489, 137-140 [3] KARLSSON *et al* 2011. *Biogeosciences* 8, 1865-1879