CO₂-fluxing crashes metal mobility in magmatic vapour VINCENT J. VAN HINSBERG^{1*}, KIM BERLO^{1,2} AND ART. A MIGDISOV¹ ¹Department of Earth and Planetary Sciences, McGill University, Montréal, Canada. (* correspondence: V.J.vanHinsberg@gmx.net; Artas65@gmail.com) ²Department of Earth Sciences, University of Oxford, Oxford, United Kingdom. (Kim_Berlo@inbox.com) Magmatic systems host many types of ore deposits, including world-class deposits of copper and gold. It is now generally accepted that magmas are the source of metals and ore-forming fluids, although in some cases their input may be restricted to introducing thermal disturbances and associated hydrothermal circulation. In these magmatic-hydrothermal systems, low-density solutions, or vapours, are an important carrier of metals. Such vapours are water-dominated at low pressure, but CO_2 becomes a progressevely important conponent in vapours exsolved from magma at depth, especially for mafic magmas. Fluxing of these CO_2 -rich vapours through the more shallow parts of the magmatic-hydrothermal plumbing system is now recognized as ubiquitous during open-system magma degassing. In this contribution, we show that such CO₂-fluxing leads to a dramatic drop in element solubility in the previously water-dominated vapour, up to a factor of 10,000 for Cu. This drop in metal solubility far exceeds that which would be predicted for the temperature and pressure gradients expected in magmatic-hydrothermal systems. CO₂-fluxing thus represents a highly efficient, but as of yet unrecognised mechanism for metal deposition in magmas and host rocks.