High-precision Tungsten isotope analyses by multicollection N-TIMS

ANNE TRINQUIER¹, MATHIEU TOUBOUL AND RICHARD J. WALKER²

¹Thermo Fisher Scientific Bremen, Germany anne.trinquier@thermofisher.com
²Dept. of Geology, University of Maryland, USA mtouboul@umd.edu

The lithophile-siderophile ¹⁸²Hf-¹⁸²W decay pair is wellsuited for constraining the timing of planetary core-formation events by coupling the isotopic growth of ¹⁸²W resulting from the decay of ¹⁸²Hf ($T_{1/2}$ = 8.9 Myr) and elemental Hf/W ratios. In addition, the presence of late-accretion extraterrestrial and/or core-derived materials can be detected through highprecision analyses down to the ppm-level [1]. High-precision Tungsten isotope analyses by MC-ICP-MS [2] are now challenged by N-TIMS analyses that yield a long-term reproducibility of 5 ppm on ¹⁸²W/¹⁸⁴W [1]. However, a residual correlation has been observed between mass fractionation corrected ¹⁸²W/¹⁸⁴W and ¹⁸³W/¹⁸⁴W that has been attributed to mass dependent variability of O isotopes during analysis and from run to run, thus causing some inacurracy in W and Re oxide correction.

The present study on a Thermo Scientific TRITON Plus is aimed at investigating the residual mass bias correlation further by monitoring 18O/16O during W isotopic analysis so as to provide an in-run correction of W and Re oxides. Sample loads of 3 μ g were run for > 820 cycles of 8 s integration at average ¹⁸²W¹⁶O₃ signals of 0.6-3.5V in single static mode, using 10¹¹ Ω amplifiers on W and Re oxide beams, with rotation of the amplifier-cup association (to average out amplifier gain biases). ¹⁸⁶W¹⁸O¹⁶O₂ beams of 4-10mV were measured with $10^{13} \Omega$ or $10^{12} \Omega$ amplifier for highly precise and accurate ¹⁸O/¹⁶O ratios determination. Data are corrected for W and Re oxide interferences by using the measured ¹⁸O/¹⁶O ratios, and for instrumental mass fractionation, by normalizing to $^{186}W/^{184}W$ or $^{186}W/^{184}W$. The internal precision on $^{182}W/^{184}W$ and $^{183}W/^{184}W$ normalized to $^{186}W/^{184}W$ is 3-8ppm (2RSE). External reproducibility is 17ppm and 12 ppm (2RSD). The internal precision on ¹⁸²W/¹⁸³W and ¹⁸⁴W/¹⁸³W normalized to ¹⁸⁶W/¹⁸³W is 2-8ppm (2RSE). External reproducibility is 15ppm and 8 ppm (2RSD). The preliminary data do not seem affected by secondary residual mass bias and have not been doubly normalized [1]. Further analyses will allow assessment of how determination of ¹⁸O/¹⁶O in samples will allow for improvement of long-term reproducibility.

[1] Touboul and Walker (2012) *Int.J.Mass Spectrom*. **309**, 109-117 [2] Holst *et al* (2013) *PNAS* **110**, 8819-8823