Boron isotope record of end-Ordovician climate change

CARA K. THOMPSON¹*, E. TROY RASBURY² AND N. GARY HEMMING²

¹Santa Monica College, 1900 Pico Blvd, Santa Monica, CA 90405, USA (cara.k.thompson@gmail.com)
²SUNY Stony Brook, Stony Brook, NY 11790, USA (troy.rasbury@stonybrook.edu, hemming@qc.edu)

We present δ^{11} B values for stratigraphically wellconstrained, well-characterized Late Ordovician brachiopod shells. Sample preservation was evaluated using petrographic and major and trace element analyses. Only samples with Sr concentrations >400 ppm were used and 87 Sr/ 86 Sr and δ^{11} B values are consistent with previously published Late Ordovician [1,2] and Silurian values [2,3].

The end Ordovician is marked by large purturbations in the δ^{13} C record [4], the 2nd largest extinction event in Earth history [5], and the onset of widespread glaciation. The glaciation may have resulted from a large-scale drawdown of CO₂ [4]. We show that δ^{11} B increases from ~11.6% to ~15% from the Maysvillian to Richmondian, which corresponds to changes in the δ^{13} C record (Fig. 1). The short time scale of this change suggests that it is at least in part driven by changes in seawater pH. The data also suggest Ordovician seawater δ^{11} B values are as much as 5% lower than today.

Figure 1: Late Ordovician δ^{11} B and δ^{13} C. M = Maysvillian.

Veizer et al (1999) Chem. Geol. 161, 59-88. [2] Ma et al (2011) Sci China Earth Sci 54, 1912-1925. [3] Joachimski et al (2005) Geochim. Cosmochim. Acta 69, 4035-4044. [4] Kump et al (1999) Palaeogeo. Palaeoclimatol. Palaeoecol. 152, 173-187. [5] Jablonski (1991) Science 253, 754-757. [6] Young et al (2009) Geol. 37, 951-954.