Differentiating summer and winter monsoon signals in precipitation isotope records from East Asia

ELIZABETH K. THOMAS¹*, STEVEN C. CLEMENS¹, WARREN L. PRELL¹, YOUBIN SUN², YONGSONG HUANG¹, GUANGSHAN CHEN³, ZHENGYU LIU^{3,4} AND XINYU WEN⁴

¹Brown University, 324 Brook St. Providence, RI, 02912 (*correspondence: elizabeth_thomas@brown.edu, steven_clemens@brown.edu, warren_prell@brown.edu, yongsong_huang@brown.edu)

²Chinese Academy of Sciences, Xi'an, China (sunyb@ieecas.cn)

³University of Wisconsin-Madison, Madison, WI, 53706 (gchen9@gmail.com, zliu3@wisc.edu)

⁴Peking University, Beijing, China (xwen@pku.edu.cn)

Reconstructions of precipitation isotope variability on orbital time scales inform how precipitation responds to large variations in forcing mechanisms (e.g., insolation, ice volume, greenhouse gases). We present two 300-kyr-long, millennialresolution Pleistocene records of leaf wax hydrogen isotopes $(\delta^2 H_{wax})$ from the South China Sea and from the Chinese Loess Plateau. These two precipitation ²H records contain contrasting seasonality (year-round in subtropical southern China, spring and summer in central China) and thus provide insights into seasonal variability that previously confounded interpretations of isotope records in monsoon regions. $\delta^2 H_{\text{wax}}$ has been widely used as a proxy for precipitation $\delta^2 H$. Precipitation $\delta^2 H$ changes in response to changes in source region and transport Using an isotope-enabled simulation of the history. Community Climate Systemm Model, we determine that precipitation $\delta^2 H$ is also affected by local condensation temperature on orbital time scales. We account for the temperature effect using independent temperature proxies: alkenones in South China Sea sediments and glycerol dialkyl glycerol tetraethers in the loess. We find that precipitation $\delta^2 H$ in southern China is primarily affected by far-traveled winter precipitation and summer monsoon transport. In central China, precipitation $\delta^2 H$ is influenced by both local precipitation recycling as well as summer monsoon transport. Ice volume influences precipitation $\delta^2 H$ in both regions during glacial periods, whereas insolation is the main mechanism causing precipitation $\delta^2 H$ variability during interglacials. These findings have implications for understanding climate forcing mechanisms in Asia, and provide reliable benchmarks for validating isotope-enabled climate models designed to predict hydroclimatic changes in monsoon regions.