H. TANG^{$1*^{\dagger}$}AND N. DAUPHAS¹

¹Origins Lab, Department of the Geophysical Sciences and Enrico Fermi Institute, The University of Chicago, 5734 South Ellis Avenue, Chicago IL 60637 (*correspondance: haolan tang@ucla.edu)

[†]Present address: Ion Probe Group, Department of Earth and Space Sciences, University of California, Los Angeles, 595 Charles E.Young Drive East, Los Angeles CA, 90095

Iron-60 ($t_{1/2}$ =2.62 Myr) have proven to be one of the significant tools to study the evolution of early solar system [1]. A high 60 Fe/ 56 Fe ratio in meteorites would imply the birth of the solar system to the explosion of a nearby supernova. However, the initial 60 Fe abundance at CAI condensation as well as its homogeneity was controversial according to the results from different meteorites. Solving the issue of abundance and distribution of 60 Fe in multiple early solar materials is critical to assess the plausibility of the scenario of supernova-triggered solar system formation.

To study this issue, we have measured the Ni isotopic compositions of bulk HEDs, angrites and mineral separates from quenched angrites D'Orbigny and Sahara 99555 [2]. According to the correlation between ⁶⁰Ni isotopic ratio and Fe/Ni ratio, 60Fe/56Fe ratios obtained in isochrons range from 2×10-9 to 3×10-9. Depending on the Mn-Cr ages of HEDs and angrites, the initial 60Fe/56Fe ratio can be estimated to be ~1×10⁻⁸ at CAI formation. Moreover, chondrules and mineral separates from CB_a chondrite (Gujba) as well as two ordinary chondrites Semarkona (LL 3.0) and NWA 5717 (ungrouped 3.05) were also studied. No resolvable ⁶⁰Ni excesses were observed in NWA 5717 or Gujba, giving an upper limit of 60 Fe/ 56 Fe initial ratio of 3×10^{-8} in the early solar nebula. Resolvable 60Ni excess was found in one Type II chondrule from Semarkona with high Fe/Ni ratio, translating into an initial ${}^{60}\text{Fe}/{}^{56}\text{Fe}$ ratio at CAI formation of $\sim 1 \times 10^{-8}$ in the region where Semarkona formed. Therefore we conclude that 60Fe was presented in a low abundance and well-mixed in the early solar system, implying that 60Fe could have been simply inherited from interstellar medium that made the solar system. On the other hand, a nearby stellar source for ²⁶Al is still required. We favor the scenario of injection by stellar winds from one or several massive stars since ²⁶Al can be decoupled from ⁶⁰Fe successfully and transported into the parent nebula for solar system [3].

[1] Dauphas & Chaussidon (2011) *AREPS* **39**, 351; [2] Tang & Dauphas (2012) *EPSL* **359-360**, 248; [3] Gounelle & Meynet (2012) *A*&A **545**, A4.