Formation of iron melt channels in silicate perovskite at Earth's lower mantle conditions

CRYSTAL Y. SHI^{1*} , WENDY L. $MAO^{1,2}$, LI $ZHANG^{3,4}$ AND WENGE $YANG^{4,5}$

¹Stanford University, Stanford, USA, yingxias@stanford.edu*

²SLAC National Accelerator Laboratory, Menlo Park, USA ³Carnegie Institution of Washington, Washington, D. C., USA ⁴Center for High Pressure Science and Technology Advanced

Research, Shanghai 201203, China ⁵Argonne National Laboratory, Argonne, USA

Core-formation the represents most significant differentiation event in Earth's history. Our planet's present layered structure with a metallic core and an overlying mantle implies that there must be a mechanism to separate iron alloy from silicates in the initially accreted material. Many previous experimental results have ruled out percolation as a major core formation mechanism for Earth at upper mantle conditions, but until now experimental results at lower mantle conditions were not possible due to the ultrahigh pressure-temperatures which lead to very small sample sizes requiring nanoscale resolution. We investigated the ability of a liquid iron alloy to form an interconnected melt network with (Mg,Fe)SiO3 perovskite (pv) under Earth's lower mantle conditions by combing laserheated diamond anvil cell with nanoscale synchrotron X-ray tomography [1]. We imaged a dramatic change in the shape of iron-rich melt in the three-dimensional reconstructions of samples prepared at varying pressures and temperatures, providing evidence that percolation would be a viable mechanism at Earth's lower mantle conditions. This has significant implications for the evolution of the planet, Earth's early thermal history, and the large scale geochemical distribution of elements.

[1] Shi et al (2013) Nature Geoscience. doi:10.1038/ngeo1956.