High-pressure behavior of synthetic Na_{0.884}Fe²⁺_{0.199}Mg_{0.475}Si_{2.442}O₆ clinopyroxene

ANDREY V. BOBROV^{1*}, MAXIM BYKOV², Elena Bykova², Leonid Dubrovinsky² AND LUCA BINDI³

¹Geological Faculty, Moscow State University, Moscow, Russia (*correspondence: archi@geol.msu.ru)

²Bayerisches Geoinstitut, Universität Bayreuth, Bayreuth, Germany

³Dipartimento di Scienze della Terra, Università di Firenze, Firenze, Italy

Most clinopyroxenes of the Earth's crust and upper mantle contain only tetrahedrally coordinated silicon. However, some high-pressure experiments [1-3] demonstrate the capability of clinopyroxenes to accommodate ^{VI}Si. This suggests that the stability field of such minerals may be expanded to the lowermost upper mantle and transition zone. The first synthesis of the Na(Mg_{0.5}Si_{0.5})Si₂O₆ pyroxene at 10 and 15 GPa and its unit-cell parameters measured by X-ray single-crystal diffraction were reported in [1]. The stability field of Napyroxene and the pyroxene/garnet transition was studied in [4]. Here we report the high-pressure behaviour of a Fe-bearing Na-pyroxene, Na_{0.884}Fe²⁺_{0.199}Mg_{0.475}Si_{2.442}O₆, up to 30 GPa at room temperature by synchrotron X-ray single-crystal diffraction.

The diffraction pattern of a crystal, loaded in a diamond anvil cell at ESRF (ID09A), can be indexed with the following monoclinic unit cell (space group C2/c): a = 9.5059(9), b = 8.6667(2), c = 5.2715(7) Å, $\beta = 108.04(9)^{\circ}$, V = 413.1(6) Å³. The lattice parameters decrease gradually with pressure reaching a = 9.0339(14), b = 8.056(17), c = 4.9585(7) Å, $\beta = 105.47(7)^{\circ}$, V = 347.9(4) Å³ at 30 GPa. No amorphization or phase transitions were detected in the studied pressure range.

The variation of the unit-cell volume is rather smooth and can be described with a third-order Birch-Murnaghan equation of state giving a bulk modulus of $K_0 = 124(4)$ GPa and K' = 3.7(3) in the same range.

This study was supported by the Russian Foundation for Basic Research (project no. 12-05-00426).

 Angel et al (1988) Nature 335, 156–158 [2] Gasparik
(1989) Contributions to Mineralogy and Petrology 102, 156– 158 [3] Yang et al (2009) American Mineralogist 99, 942–949
[4] Dymshits et al (2013) Geochimica et Cosmochimica Acta 105, 1–13