High Precision Δ^{17} O analysis of cherts – implications for the temperature and δ^{18} O of ancient oceans

SUKANYA SENGUPTA^{1*}, ANDREAS PACK¹, FRANÇOIS ROBERT², JOACHIM REITNER³ AND DANIEL HERWARTZ⁴

¹Universität Göttingen, Geowissenschaftliches Zentrum, Abteilung Isotopengeologie, Goldschmidtstraße 1, 37073 Göttingen, Germany (*ssengup@gwdg.de)

²Muséum National d'Histoire Naturelle, Paris, France

³Universität Göttingen, Geowissenschaftliches Zentrum,

Abteilung Geobiologie, Göttingen, Germany

⁴Universität Köln, Institut für Geologie und Mineralogie, Köln, Germany

A controversial issue in Earth science is the change of δ^{18} O and/or temperature of seawater throughout the past 4 Gyrs. Oxygen isotope studies of ancient marine chemical sediments suggest that the ancient oceans were either very hot (up to 80°C; [1]) or had a low δ^{18} O (e.g. -12%; [2]). Alternatively, low δ^{18} O values are a result of diagenesis [3]. We address this classical problem using high-precision triple O isotope ratios of cherts. Recently, [4] resolved mass-dependent variations in Δ^{17} O in terrestrial rocks that are related to high- and low-T fractionation processes and reservoir mixing.

We analyzed Archaean, Proterozoic, Phanerozoic and modern cherts from different locations. We have reacted these cherts with BrF₅ in Ni bombs and measured the liberated oxygen in dual inlet mode of MAT253 mass spectrometer. The precision in Δ^{17} O was about ±10–15 ppm; a little lower than what can be obtained by laser fluorination of silicates and oxides [4].

The Archaean cherts are found to have δ^{18} O of ~ 16‰ and a Δ^{17} O of ~ -150 ppm (see [4] for definition of Δ^{17} O). Phanerozoic cherts have δ^{18} O of about +30‰ and Δ^{17} O around -250 ppm. The composition of the Proterozoic cherts falls in between these two in the triple isotope space.

We will discuss the results with respect to the temperature and $\delta^{18}O$ of Precambrian and Archaean seawater.

[1] Knauth and Epstein (1976) *GCA* **40**, 1095–1108. [2] Perry (1967) *EPSL* **3**, 62–66. [3] Degens and Epstein (1962) *Bull. Am. Assoc. Petrol. Geol.* **46**, 534–542. [4] Pack and Herwartz (2014) *EPSL* **390**, 138-145.