Determination of δ^{15} N and δ^{18} O in nitrate: a method comparison

EVGENIA RYABENKO¹*, MYRIAM STOEWER¹, ANJA WUNDERLICH², FLORIAN EINSIEDL², KAY KNOELLER³ AND MARTIN ELSNER¹

¹Institute of Groundwater Ecology, Helmholtz Zentrum München, Ingolstaedter Landstrasse 1, D-85764 Neuherberg, Germany

(*correspondence: evgenia.ryabenko@helmholtzmuenchen.de)

²TU Munich, Faculty of Civil, Geo and Environmental Engineering, Hydrogeology, Arcisstr. 21, 80333 Munich ³Helmholtz-Centre for Environmental Research, Theodor-

Lieser-Straße 4, D-06120 Halle, Germany

Nitrogen (δ^{15} N) and oxygen (δ^{18} O) isotope ratios of NO₃are often used to trace dominant NO3 pollution sources in water. Three methods are currently employed: (i) the silver nitrate $(AgNO_3)$ method, (ii) the bacterial denitrification method and (iii) the cadmium reduction method. The AgNO₃ method is only applicable for fresh-water samples with 100-200 mmol of NO_3^- , because it requires NO_3^- purification by anion-exchange and subsequent precipitation as AgNO3, for analysis by elemental analyser-isotope ratio mass spectrometry (EA-IRMS). The existence of large blanks from dissolved organic matter can also be an issue in the application of this method. The bacterial denitrification method uses bacteria to convert NO₃⁻ into N₂O[1] and the cadmium method produces N_2O by chemical reduction of NO_3^- to NO_2^- with a subsequent reaction with azide [2]. Since the formation of N₂O eliminates any interferences and is amenable to gas chromatography-IRMS, the N₂O methods have a detection limit below 1μ mol and can also be used for seawater samples. Despite these advantages, the N2O methods are not yet universally adapted and a reliable method comparison is still missing. Here we present a first systematic comparison of all three methods using river-, ground- and contaminated water samples having a wide range of δ^{15} N- and δ^{18} O-NO₃⁻ values and NO₃⁻ concentrations.

[1] Sigman *et al* (2001) *Anal. Chem.* **73**, 4145-4153 [2] Ryabenko *et al* (2009) *L&O-Methods* **7**, 545-552

2146