${ }^{40} \mathrm{Ar}{ }^{/ 39} \mathrm{Ar}$ age of hornblende-bearing R chondrite LAP 04840

K. RIGHTER ${ }^{1}$ AND M. COSCA ${ }^{2}$

${ }^{1}$ Mailcode KT, NASA Johnson Space Center, 2101 NASA Pkwy., Houston, TX 77058
${ }^{2}$ US Geological Survey, Denver Federal Center, MS 963, Denver, CO 80225

Chondrites have a complex chronology due to several variables affecting and operating on chondritic parent bodies such as radiogenic heating, pressure and temperature variation with depth, aqueous alteration, and shock or impact heating [1]. Unbrecciated chondrites can record ages from 4.56 to 4.4 Ga that represent cooling in small parent bodies. Some brecciated chondrites exhibit younger ages ($\ll 4$ to 4.4 Ga) that may reflect the age of brecciation, disturbance, or shock and impact events ($\ll 4 \mathrm{Ga}$).

A unique R chondrite was recently found in the LaPaz Icefield of Antarctica - LAP 04840 [2]. This chondrite contains $\sim 15 \%$ hornblende and trace amounts of biotite, making it the first of its kind. Studies have revealed an equigranular texture, mineral equilibria yielding equilibration near $650-700{ }^{\circ} \mathrm{C}$ and $250-500$ bars, hornblende that is dominantly OH -bearing (very little Cl or F), and high D / H ratios $[8,9,10]$. To help gain a better understanding of the origin of this unique sample, we have measured the ${ }^{40} \mathrm{Ar} /{ }^{39} \mathrm{Ar}$ age.

Age of $4.290+/-0.030 \mathrm{Ga}$ is younger than one would expect for a sample that has cooled within a small body [4], and one might instead attribute the age to a younger shock event, On the other hand, there is no evidence for extensive shock in this meteorite (shock stage S2; [3]), so this sample may have been re-annealed after the shock event. This age is similar to Ar-Ar ages determined for some other R chondrites [5,6].
[1] Bogard (2011) Chemie der Erde-Geoch. 71, 207-226. [2] Satterwhite and Righter (2006) Ant. Met. Newsl. 29, no. 1. [3] McCanta et al (2008). GCA 72, 5757-5780. [4] Bennett and McSween (1996) MaPS 31, 783-792. [5] Dixon et al (2003) MaPS 38, 341-355. [6] Nagao et al (1999) Ant. Met. Res. 12, 81-93.

