Glacial-to-interglacial changes in nitrate supply and consumption in the subarctic North Pacific from microfossil-bound N isotopes at two trophic levels

HAOJIA REN¹, ANJA S. STUDER², DANIEL M. SIGMAN², SASCHA SERNO³, ROBERT F. ANDERSON³, GISELA WINCKLER³, SERGEY OLEYNIK², RAINER GERSONDE⁴ AND GERALD H. HAUG⁵

¹Research Center for Environmental Changes, Academia Sinica, Taiwan abbyren@gate.sinica.edu.tw

²Department of Geosciences, Princeton University, Princeton, NJ, U.S.A.

³Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, U.S.A.

⁴Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, German

⁵Geological Institute, ETH Zurich, Switzerland

The modern subarctic North Pacific constitutes one of the high-nutrient-low-chlorophyll regions of the modern ocean, where nitrate is perennially abundant at the surface. In a sediment core from the western subarctic North Pacific (SNP), report the foraminifera-bound $\delta^{15}N$ (FB- $\delta^{15}N$, we in Neogloboquadrina pachyderma and Globigerina bulloides) and diatom-bound $\delta^{15}N$ (DB- $\delta^{15}N$) back to the last glacial maximum (LGM), to infer past changes in the degree of surface nitrate consumption. The $\delta^{15}N$ of all recorders is higher during the LGM, indicating more complete nitrate consumption over the course of the spring-to-summer maximum in phytoplankton growth. N. pachyderma FB- δ^{15} N is similar to $DB-\delta^{15}N$ in the Holocene but 2.3% higher than DB- δ^{15} N during the LGM, a difference that is consistent with reduced wintertime nitrate supply during the LGM. Unlike DB- δ^{15} N, FB- δ^{15} N does not decrease from the LGM into HS1, which supports the previous suggestion that the HS1 DB- $\delta^{15}N$ drop is due to contamination by sponge spicules. FB- δ^{15} N decreases in the latter half of the Bolling/Allerod (B/A) warm period, rises weakly during the Younger Dryas (YD) cold period, followed by a decline into the mid-Holocene. The FB- δ^{15} N records, together with changes in the biogenic flux reconstructed from this site, suggest that the coupling between cold climate and reduced nitrate supply that characterizes the LGM-to-Holocene difference also applied to the deglacial events. The indications for this coupling are strengthened by a correction of the FB- and DB- $\delta^{15}N$ data for denitrificationdriven increases in the $\delta^{15}N$ of subsurface nitrate during the B/A and post-YD period.