Sulfate sulfur (ô³⁴S) isotope measurements by MC-ICP-MS

MICHAEL J. PRIBIL¹*, POUL EMSBO² AND W. IAN RIDLEY³

 ^{12,3}United States Geological Survey, Denver, CO 80225, USA (*correspondence: ¹mpribil@usgs.gov, ²pemsbo@usgs.gov, ³iridley@usgs.gov)

A new method implementing an isotope calibration curve correction for sulfate-sulfur (S_{SO4}) isotope ratio measurements, $^{34}\text{S}/^{32}\text{S}$ ($\delta^{34}\text{S}),$ using a desolvating nebulizer and a laser ablation (LA) introduction system coupled to a multi-collector inductively coupled plasma mass spectrometer (MC-ICP-MS) was developed to improve accuracy of $\delta^{34}S$ measurements. Standard sample bracketing (SSB) is a mass bias correction method utilizing a single standard, typically for narrow range (per mil) isotope systems commonly measured by MC-ICP-MS. However, variations in δ^{34} S for natural samples (as great as 80%) exceed the mass bias correction capability of a single S_{SO4} isotope standard. This study demonstrated improved accuracy using SSB isotope calibration curve correction for $SO_4 \delta^{34}S$ over a large $\delta^{34}S$ range for both solution and solid samples. Two National Institute of Standards and Technology (NIST) S_{S04} isotope standards and a USGS M-158 reference material were evaluated using both SSB and SSB isotope calibration curve correction (Fig 1). The $\delta^{34}S$ is reported to CDT (±0.2‰).

Figure 1: S_{SO4} calibration curve for $\delta^{34}S$ from -12.4‰ to +21.0‰ for solution SO₄ reference materials (SSB=10.0‰).

Sample	SSB	SSB _{correction}	Reported
NIST 8553	17.6‰	16.8‰	16.9‰
NIST 8556	17.8‰	17.1‰	17.1‰
USGS M-158	0.2‰	1.4%	1.4‰

Analyses by LA-MC-ICP-MS resulted in similar calibration curves and isotope corrections as the solution samples. The isotope calibration curve correction method is necessary to accurately measure solution and solid S_{SO4} isotopic composition by MC-ICP-MS when using S_{SO4} as a SSB.