Stable Sr Isotopes in Seawater

A. PAYTAN*, A. EISENHAUER2, E. GRIFFITH1,3, C.-T. CHIEN1 and J. STREET1

1University of California Santa Cruz, Santa Cruz, CA 95064, USA (*correspondence: apaytan@ucsc.edu)
2GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, 24148, Kiel, Germany
3The University of Texas at Arlington, Arlington, TX 76019, USA

The combined determination of stable (mass dependent isotopic fractionation) and radiogenic isotopic variation of seawater Sr has great potential for determining more accurate input and output rates of Sr to/from the ocean and deciphering changes in the rate and source of weathered material to the ocean caused by tectonic or climatic changes, to constrain sedimentation and dissolution (sinks) and to describe the relation and feedbacks of such changes to the global C cycle.

We utilize marine (pelagic) barite as a recorder of seawater stable and radiogenic Sr-isotope ratios (87Sr/86Sr and 87Sr/86Sr) to shed light on the oceanic Sr cycle and its relation to earth’s climate and tectonic history. Barite separated form Holocene sediments from cores collected at various location and water depths indicate that stable Sr isotopes in modern marine barite have a constant isotopic offset (fractionation) from seawater. Moreover, the effect of various environmental conditions (temperature, salinity, biological productivity, etc.) has little impact on the isotopic offset relative to seawater. The barite from core top sediments is 0.15 ± 0.014 permil depleted relative to seawater.

A high resolution (<0.5Ma) stable Sr isotope record for the past 40 Ma will be presented. Preliminary results indicate fluctuations of > 0.15 permil (significantly larger that the analytical error of 0.02 permil). Changes in the stable Sr record seem to correspond to major climate events and do not correlate with changes in the slope of the radiogenic Sr-isotope curve.