δ¹³C records of Diplopten e in the California sediments over the past 25 kyr

M. NAKAKUNI¹, O. SEKI², S. YAMAMOTO^{1*}, R. ISHIWATARI² AND ODP LEG 167 SHIPMENBERS

¹Department of Environmental Engineering for Symbiosis, Faculty of Engineering, Soka Univ., 1-236, Tangi-cyo, Hachioji-shi, Tokyo, 192-0003, Japan (* Corresponding author: syama@soka.ac.jp)

²Institute of Low Temperature Science, Hokkaido Univ., Kita-19, Nishi-8, Kita-ku, Sapporo,Hokkaido, 060-0819, Japan

³Geotec Inc., Takaido-nishi 3-16-11, Suginami, Tokyo, 168-0071, Japan

California margin sediments (ODP Leg 167, Hole 1017 E, over 130 kyrs) in the Northern Pacific Ocean have been researched for understanding paleo-environmental changes. We examined the vertical distribution of hopanes, especially diploptene, in the sediments over 25 kyrs.

The results in this study shows that stable carbon isotopic (δ^{13} C) compositions of diploptene depleted (*c.a.* -38 ~ -40 %) at the B/A period (Fig.1). This result suggests that there were two groups of diploptene with different δ^{13} C values in the sediments and the diploptene in the B/A period had been originated from chemotroph bacteria at anoxic environments[1]. Therefore this indicates that an anoxic bottom water condition was developed during the B/A period, which might be caused by deglaciation[2] and current variation[3].

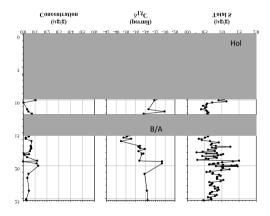


Figure.1 Vertical profiles of diploptene, the $\delta^{13}C$ value and total sulfur in the upper part of the sediment.

[1] Freeman *et al* (1994) *Org Geochem* **21**, 629-644. [2] Moore *et al* (2008) *U.S. Geological Survey* **2945**. [3] Behl and Kennett. (1996) *Nature* **379**, 243-246.