Impact of carbon capture and storage on the methanogenic activity and pathway in a petroleum reservoir

DAISUKE MAYUMI¹, JAN DOLFING², SUSUMU SAKATA¹*, HARUO MAEDA³, YOSHIHIRO MIYAGAWA³, MASAYUKI IKARASHI³, HIDEYUKI TAMAKI⁴, MIO TAKEUCHI¹, CINDY H. NAKATSU⁵ AND YOICHI KAMAGATA⁴

¹Institute for Geo-Resources and Environment, AIST, Japan (*correspondence: su-sakata@aist.go.jp)

²School of Civil Engineering and Geosciences, Newcastle University, UK

³INPEX Corporation, Japan

⁴Bioproduction Research Institute, AIST, Japan

⁵Department of Agronomy, Purdue University, USA

Deep subsurface petroleum reservoirs are candidate sites for carbon capture and storage (CCS). The feasibility of CCS has been mainly studied from a geological perspective. However, little is known about the effects of CO₂ storage on microbes inhabiting the reservoirs. To address this issue, we investigated the effects of the elevated CO2 concentration on the methanogenic microbial community and function in a petroleum reservoir by high-pressure incubation experiments mimicking the in situ reservoir (55°C, 5 MPa) or CO, storage conditions. The microcosms were constructed using the production water and crude oil, pressurized with either N_2 or N_2+CO_2 (90:10) at 5 MPa and then incubated at 55°C. Methane production was observed with the decrease of acetate dissolved in the production water under both high and low CO2 conditions. However, the stable isotope tracer experiments and molecular biological analyses for both microcosms consistently showed that the major methanogenic pathway under the in situ reservoir condition was acetate oxidation coupled with hydrogenotrophic methanogenesis, whereas acetoclastic methanogenesis occurred under the CO₂ storage condition. Based on thermodynamic calculations, acetoclastic methanogenesis is exergonic under the high CO₂ conditions, but acetate oxidation would be endergonic. These results clearly indicated that CO_2 storage into a high-temperature petroleum reservoir would cause a drastic change in the methanogenic pathways. Importantly, the elevated CO₂ concentration invokes the methanogenic pathway (acetoclastic methanogenesis) which is faster and more favorable for crude oil biodegradation. Our study presents a possibility of CCS for enhanced microbial production of natural gas in hightemperature petroleum reservoirs.