The Partitioning of Fluorine between Granitic Melt and Mn-rich Garnet

JAMES L. MANER IV¹*, DAVID LONDON¹ AND GEORGE B. MORGAN VI¹

1School of Geology and Geophysics, University of Oklahoma, 100 East Boyd Street, SEC 710, Norman, OK 73019-1009 (*correspondence: jlmaner87@ou.edu)

As a potential monitor of fluorine concentration in evolved granitic liquids, the partitioning of F between garnet and peraluminous Mn-bearing granitic melt has been assessed by cold-seal experimental techniques and electron microprobe analysis. Garnets and glasses (melts) were synthesized from a mixture of minerals and reagents at 800°C, 200 MPa, and an $f(O_2)$ near NNO-0.5 log units. Relicts of garnets (Sps₉₅Alm₅ and Alm₄₆Prp₄₄Sps₆Grs₄) added as sources of Fe, Mg, and Mn have Sps-rich overgrowths. The average compositions of overgrowths on Alm-rich relicts are Sps₇₆Alm₁₂Prp₁₁Grs₁ and those on Sps-rich relicts are Sps₈₃Alm₆Prp₁₀Grs₁.

The partitioning of F between Grt-melt seems to be controlled by the Mn/Fe ratio of Grt and/or T-site deficiency. The average F content of new garnet is 0.57 wt.% (1 σ =0.13) in overgrowths with X_{Sps}=0.83 and 0.46 wt.% (1 σ =0.18) with X_{Sps}=0.76. The corresponding average F content of glass is 2.52 wt.% (1 σ =0.10), yielding crystal/melt partition coefficients in the range of 0.18-0.23. Further experiments are being conducted to test the dependence on F concentration and temperature and to reduce the variability of F content among products.