Enhanced uptake of Sr into calcite via an amorphous calcium carbonate precursor: An EXAFS study.

*Janice L. Littlewood¹ Samuel Shaw² Caroline L. Peacock¹ Divyesh Trivedi¹ and Ian T. Burke¹

¹University of Leeds, UK (⁎correspondence: eejll@leeds.ac.uk)
²The University of Manchester, UK
³National Nuclear Laboratories, Warrington, , UK

Strontium typically incorporates into calcium carbonates through the distortion of the carbonate lattice, producing 6-fold and 9-fold Sr coordination in calcite and aragonite respectively [1]. Uptake is controlled by physiochemical factors and the mechanism of formation [1–2].

Trace-metal uptake to carbonates is often described in terms of a distribution coefficient (k_d) where the metal/Ca ratio in the precipitated calcium carbonate mineral is controlled by the metal/Ca ratio in solution [3]. K_d values of < 1 mol % Sr-substitution into calcite have been reported [3]. Here we present a novel synthesis procedure, in which significantly higher k_d values of 10 mol % Sr substitution have been achieved.

By rapidly mixing equal volumes of SrCl₂/CaCl₂ and Na₂CO₃ at room temperature we observed the formation of an unstable ACC precursor within seconds of mixing. XRD and SEM data showed that this crystallised within minutes forming a metastable vaterite phase, and after 3 hours fully crystallised to calcite. Sr K-edge EXAFS spectroscopy was used to elucidate the exact mechanism of Sr incorporation and local Sr bonding environment during the ACC, vaterite, and calcite transformations as a function of Sr concentration. This synthesis route potentially offers a viable low-cost treatment option for ⁹⁰Sr contaminated land and effluent wastes.